
Solving Hard Mizar Problems with
Instantiation and Strategy Invention

Jan Jakub̊uv1,2, Mikoláš Janota1, and Josef Urban1

1 Czech Technical University in Prague, Czechia
2 University of Innsbruck, Austria

Abstract. In this work, we prove over 3000 previously ATP-unproved
Mizar/MPTP problems by using several ATP and AI methods, raising
the number of ATP-solved Mizar problems from 75% to above 80%. First,
we start to experiment with the cvc5 SMT solver which uses several
instantiation-based heuristics that differ from the superposition-based
systems, that were previously applied to Mizar, and add many new solu-
tions. Then we use automated strategy invention to develop cvc5 strate-
gies that largely improve cvc5’s performance on the hard problems. In
particular, the best invented strategy solves over 14% more problems
than the best previously available cvc5 strategy. We also show that dif-
ferent clausification methods have a high impact on such instantiation-
based methods, again producing many new solutions. In total, the meth-
ods solve 3,021 (21.3%) of the 14,163 previously unsolved hard Mizar
problems. This is a new milestone over the Mizar large-theory bench-
mark and a large strengthening of the hammer methods for Mizar.

1 Introduction: Mizar, ATPs, Hammers

The Mizar Mathematical Library (MML) [1] is one of the earliest large libraries
of formal mathematics, containing a wide selection of lemmas and theorems
from various areas of mathematics. The MML and the Mizar system [35,2,19]
has been used as a source of automated theorem proving (ATP) [46] problems for
over 25 years, starting with the export of several Mizar articles done by the ILF
system [11,10]. Since 2003, the MPTP system [52,53] has been used to export the
MML in the DFG [20] and later TPTP [51] formats. In the earliest (2003) ATP
experiments over the whole library, state-of-the-art ATPs could prove about
40% of these problems when their premises were limited to those used in the
human-written Mizar proofs (the so called bushy3, i.e., easier, mode).

Since 2013, a fixed version of the MML (1147) and MPTP consisting of 57880
problems has been used as a large benchmark for ATPs and related hammer [7]
(large-theory) methods over Mizar [41,28,50,42,21,9]. When using many ATP
and premise-selection methods, 56.2% of the problems could be proved in [30].
This was recently raised to 75.5% [24], mainly by using the learning-guided E [48]
(ENIGMA [27,17]) and Vampire [33] (Deepire [49]) systems.

3 https://tptp.org/MPTPChallenge

https://tptp.org/MPTPChallenge


2 J. Jakub̊uv et al.

Input
formula

SMT
solver

Ground solver

Instantiation

Instances
Ground

assignment

satisfiable

unsatisfiable

or infinite loop

Fig. 1. Schematic of an SMT solver with quantifier instantiation.

Both E and Vampire are mainly saturation-style superposition systems. In
the recent years, instantiation-based systems and satisfiability modulo theories
(SMT) solvers such as cvc5 [3], iProver [32] and Z3 [12] are however becoming
competitive even for problems that do not contain explicit theories in the SMT
sense [6,13,18]. The problems that they solve are often complementary to those
solved by the superposition-based systems.

1.1 Contributions

In this work, we use instantiation-based methods (Section 2) to solve automati-
cally as many hard Mizar problems as possible. Our main result is that the set
of ATP-provable MPTP problems has been increased by over 3,000, from 75.5%
to 80.7%. All these problems are proved by the cvc5 system which we improve in
several ways. First, we use the Grackle system [22] (Section 3) to automatically
invent stronger strategies for MPTP (Section 4.3). Our best strategy outper-
forms the previously best cvc5 strategy by 14% and our best 7-strategy portfolio
solves 8.8% more problems than the corresponding CASC portfolio (Section 4.4).
We also combine strategy development with alternative clausification methods.
This turns out to have a surprisingly high impact on the instantiation-based
system, contributing many new solutions (Section 4.5). Finally, we obtain fur-
ther solutions by modifying the problems with premise selection (Section 4.6).
Ultimately, these methods double the number of the previously ATP-unproved
Mizar problems solved by cvc5 from 1,534 to 3,021. In this context, we consider
a problem proved if there is at least one system that can solve it. We show that
the methods extend to previously unseen Mizar problems coming from newly
added articled in a new version of MML (Section 4.7). We analyze the invented
strategies (Section 5) and discuss several hard Mizar problems proved by them
(Section 6).

2 Instantiation-Based Methods

In contrast to saturation-style superposition systems, SMT solvers, namely cvc5,
tackle quantifiers by instantiations, which can be seen as a direct application of



Solving Hard Mizar Problems 3

the Herbrand’s theorem. A subformula (∀x1 . . . xn ϕ) produces lemmas of the
form (∀x1 . . . xn ϕ) → ϕ[x1/t1, . . . , xn/tn], with ϕ quantifier-free and ti ground
terms. For example, ∀xR(f(x), c) may be instantiated as (∀xR(f(x), c)) →
R(f(c), c). Existential quantifiers are removed by Skolemization.

This approach consists of a loop alternating between a ground solver and an
instantiation module (Figure 1), where the ground solver perceives quantified
formulas as opaque propositions. After identifying a model for the ground part,
control shifts to the instantiation module. This module generates new instances
of the quantified sub-formulas that are currently meant to hold, strengthening
the grounded part of the formula. The process stops if the ground part becomes
unsatisfiable, if ever (model-based quantifier instantiation can also lead to sat-
isfiable answers [16]).

The cvc5 solver implements several instantiation methods. For decidable frag-
ments, dedicated approaches exist, such as bit-vectors or linear arithmetic [44,15,38,5].
Some of those can be seen as syntactic-driven approaches, e-matching [14,36]
or syntax-guided instantiation [39]. Other methods are semantic-driven such
as model-based [16] or conflict-based [45]. A straightforward, but complete, ap-
proach for FOL is enumerative instantiation [29,43], which exhaustively goes
through all ground terms in the ground part. Instantiation itself can also be
guided by ML methods [47].

3 Grackle: Targeted Strategy Invention for cvc5

Grackle [22] is a system for the automated invention of a portfolio of solver strate-
gies targeted to selected benchmark problems. A user provides a set of bench-
mark problems and Grackle can automatically discover a set of diverse solver
strategies that maximize the number of solved benchmark problems. Grackle
supports the invention of good-performing strategies for several solvers, includ-
ing ATP solvers E [48], Vampire [33], Lash [8], and an SMT solver Bitwuzla [37].
Support for additional solvers can be easily added by providing a parametrization
of the solver strategy space, and by implementing a simple wrapper to launch
the solver. In this paper, we extend Grackle to support an SMT solver cvc5 [3],
and we evaluate its capabilities on a first-order translation of Mizar problems.

Grackle is a successor of BliStr [54], with which Grackle shares the core
of the strategy invention algorithm. Grackle, however, generalizes the algorithm
for an arbitrary solver. BliStr/Grackle starts with user-provided solver strategies
and interleaves a strategy evaluation with a strategy invention phase. During the
strategy evaluation phase, all available strategies are evaluated on all benchmark
problems, typically with some higher resource limit T . This evaluation partitions
the benchmark problems by individual strategy performance, giving us, for each
strategy S, the set of problems PS where S performs best. The best strategy S
is then specialized on problems PS in the follow-up strategy invention phase in
order to search for a strategy S′ with an increased performance on PS . This is
achieved by launching an external parameter tuning software, like ParamILS [23]
or SMAC3 [34], on problems PS with the strategy S as the initial starting point.



4 J. Jakub̊uv et al.

Moreover, a lower resource limit t than in the evaluation phase (T ) is imposed
on the solver during the tuning in order to guide the tuner towards an improved
performance on PS . The core idea, verified in previous research [54,26,25,22], is
that improved performance on PS will bring about an improvement on other
not-yet-solved problems as well. A new evaluation phase then proceeds with the
extended portfolio. Grackle has been extensively described [22] and we refer the
reader therein for a detailed exposition.

To use cvc5 with Grackle requires providing a parametrization of the cvc5
strategy space. A strategy for cvc5 is specified as command line options and
their values. While cvc5 supports more than 400 different options, we select all
options with non-numeric values relevant to problems in the theory of uninter-
preted functions (UF) with quantifiers. This choice is guided by our indented
application on the Mizar benchmark problems which are expressed in the UF
theory with a large number of quantified formulae. The cvc5 solver divides its
options between regular and expert. Hence we construct two parametrizations of
cvc5 strategy space, one smaller with the regular options only, and the second
one with both regular and expert options. The regular parametrization has 98
parameters and the strategy space covers about 1035 different strategies, while
the full parametrization has 168 parameters and the space size is about 1058. As
an exception, one of the expert options, namely --cbqi-vo-exp, was used also
in the regular strategy space, to accommodate all the options from the CASC
strategies in both spaces. We automatically extract all the options and their
values from cvc5’s source files decision options.toml, prop options.toml, quanti-
fiers options.toml, smt options.toml, and uf options.toml.4

Grackle additionally allows to express dependencies among options and thus
to describe options that are effective only under specific settings of another
option. We automatically construct some dependencies from common prefixes
of option names, for example, the option --cbqi-mode is applicable only when
the option --cbqi is turned on. While many of the dependencies might be left
unspecified, and while many of the options might be unrelated to our benchmark
problems, we leave this problem to Grackle and to the underlying parameter
tuner to deal with. In this way, we also test Grackle’s abilities to deal with
redundancies in the strategy space. The cvc5 strategy space for Grackle can be
found in the Grackle repository.5

4 Experiments

4.1 Dataset

Our goal is to prove as many of the remaining ATP-unproved MPTP problems as
possible. Of the 57,880 problems, 43,717 have been proved6 in total in the previ-
ous experiments [24,30], thus, 14,163 problems remain to be proved. Our strategy

4 https://github.com/cvc5/cvc5/tree/cvc5-1.1.1/src/options
5 https://github.com/ai4reason/grackle/tree/v0.2/grackle/trainer/cvc5
6 https://github.com/ai4reason/ATP Proofs

https://github.com/cvc5/cvc5/blob/cvc5-1.1.1/src/options/decision_options.toml
https://github.com/cvc5/cvc5/blob/cvc5-1.1.1/src/options/prop_options.toml
https://github.com/cvc5/cvc5/blob/cvc5-1.1.1/src/options/quantifiers_options.toml
https://github.com/cvc5/cvc5/blob/cvc5-1.1.1/src/options/quantifiers_options.toml
https://github.com/cvc5/cvc5/blob/cvc5-1.1.1/src/options/smt_options.toml
https://github.com/cvc5/cvc5/blob/cvc5-1.1.1/src/options/uf_options.toml
https://github.com/cvc5/cvc5/tree/cvc5-1.1.1/src/options
https://github.com/ai4reason/grackle/tree/v0.2/grackle/trainer/cvc5
https://github.com/ai4reason/ATP_Proofs


Solving Hard Mizar Problems 5

invention methods work by gradually developing strategies that are faster and
faster on solvable problems. That is why we extend the set of the 14,163 ATP-
unproved problems by another 4,283 hard problems that were proved only in the
latest stages of the previous ATP experiments. We will use their versions with
heuristically minimized premises (using subproblem based minimization [24]) to
increase the chances of the ATP systems. We also remove from this set 1,585
problems for which the minimization was not done yet.7 This results in a set of
16,861 hard problems on which we develop our strategies. These problems are by
default in the FOF format. We denote them minfof below. Later on (Section 4.5),
we apply different clausifications to them. In Section 4.6 we additionally exper-
iment with different premise selections for them.

4.2 Overview of the Experiments

Most of the experiments in this paper are conducted on the set of 16,861 hard
Mizar problems described in Section 4.1. Section 4.3 focuses solely on describing
three Grackle runs performed to develop a robust portfolio of cvc5 strategies
specialized for Mizar problems. All strategies are evaluated with a time limit of 30
seconds. Since increasing the time limit can still yield significant improvements,
selected strategies are evaluated in Section 4.4 with a higher time limit, namely
600 seconds. Sections 4.3 and 4.4 use the same version of problems (minfof ) and
differ only in the time limit. In Section 4.5, we explore different clausification
methods, and in Section 4.6, we investigate various premise selection methods.
This implies that Sections 4.5 and 4.6 use syntactically different but semantically
equivalent versions of Mizar problems. On the other hand, Section 4.7 attempts
to assess the overfitting of Grackle-invented strategies on a new version of MML,
thus the numbers reported therein are not directly comparable with those in
previous sections since the problem sets differ.

4.3 Experiments with Grackle Strategy Invention

We evaluate8 the Grackle’s ability to invent good-performing strategies for cvc5
on the minfof benchmark. As a baseline, we consider all 16 strategies used in
the cvc5’s CASC competition script (see Table 5). We evaluate these 16 strate-
gies with a 30-second time limit per strategy and problem. The best strategy
solves 2,508 problems, while all the strategies together solve 3,460 problems. The
two most complementary strategies are used as the initial portfolio for the first
Grackle run.

We perform consequently three Grackle runs, each with an overall timeout
of 7 days. Grackle terminates when all strategies have been already specialized,
or when the time is exhausted. All three runs were terminated by timeout.

7 These are the non-theorem Mizar toplevel lemmas, for which the subproblem look-up
(and thus also minimization) is more challenging.

8 On two AMD EPYC 7513 32-Core processors @ 3680 MHz and with 514 GB RAM.



6 J. Jakub̊uv et al.

Fig. 2. Time progress of solved problems in Grackle runs.

(run #1) The first Grackle run starts with the two most complementary CASC
strategies and uses the regular strategy space (see Section 3). The first run
terminated after 7 days with 50 new strategies solving together 3,459 prob-
lems with a 30-second time limit per strategy and problem. Out of these
problems, 345 are not solved by any of the 16 baseline CASC strategies.

(run #2) The second run uses the same regular strategy space as run #1 but
it starts from the best 6 strategies found in the first Grackle run. These
initial strategies solve 3,425 problems and Grackle invented 45 new strategies
solving together 3,696 problems with 485 unsolved by baseline strategies.

(run #3) The third run uses the same setup as run #2 but it uses the full
strategy space instead of the regular one. Grackle invented 48 new strategies
solving together 3,856 problems with 629 unsolved by baseline strategies.

The time progress of the Grackle runs is visualized in Figure 2. The lower
part (new) shows the number of new problems solved by the strategy invented
at that time, while the upper part (total) shows the total number of problems
solved. The red dotted line marks the performance of the 16 baseline CASC
strategies. The x-axis additionally shows the time of invention of the best three
strategies (grki).

The figure shows that the expert options added in run #3 helped to develop
stronger strategies and to improve the results. Strong strategies are sometimes
invented after several days of stagnation. Grackle invented 143 strategies, which
together solve 4,113 problems. The best 16 Grackle strategies solve 4,039, which
increases the number of 3,460 problems solved by the 16 baseline strategies by
16.7%. The best single strategy solves 2,796, which improves on the best baseline
strategy (which solves 2,508) by 11.5%.



Solving Hard Mizar Problems 7

run
solved single strategies specializations

initial final new casc+ best initial new needed total failed

#1 2823 3459 +636 +345 2696 2 50 28 56 6

#2 3425 3696 +271 +482 2696 6 45 27 56 11

#3 3425 3856 +431 +629 2796 6 48 29 58 10

Table 1. Grackle strategy invention for cvc5 on Mizar problems (Section 4.3).

Additional data from the experiments are depicted in Table 1. Columns solved
describe the initial and the final count of solved problems together with the im-
provement over the initial strategies (new), and over the 16 baseline CASC
strategies (casc+). The column single best states the number of problems solved
by the best invented strategy. Columns strategies describe the initial count of
strategies, the count of new strategies, and how many strategies are needed
to cover the final number of solved problems (the length of the greedy cover
sequence). Columns specializations provide the number of attempted specializa-
tions (total) and failed specializations where the output strategy was already
known.

4.4 Experiments with Higher Time Limits

The above (Section 4.3) strategies were evaluated in a 30 s time limit. To solve
more Mizar problems we proceed by evaluating the best strategies with a higher
time limit of 600 s. Evaluation of a single strategy with this time limit takes
about 20 hours. Hence, we evaluate strategies selectively as follows. We start
with the strategies evaluated in 30 s and construct their greedy cover. The best
30 s strategy is then evaluated in 600 s. The newly evaluated strategy is then
added to the greedy cover and the process is iterated until new problems are
being proved. The best Grackle strategy grk1 solves 3,496 problems, while the
best CASC strategy solves 3,059. This is a 14.3% improvement. We ended up
with 7 Grackle strategies and with 7 CASC strategies evaluated in 600s solving
together 4,653 problems (4,398 by Grackles and 4,043 by CASCs). Together with
the strategies evaluated in the lower time limit we solved altogether 5,035 of the
benchmark problems at this point.

This experiment with higher time limits also shows an interesting difference
in behavior between saturation-based ATP provers and instantiation-based SMT
solvers. While SMT solvers seem to benefit significantly from higher time limits,
ATP solvers typically benefit much less from it. For example, in the comparable
single-strategy setting, cvc5 solves almost 50% more problems when the time
limit is increased from 60 to 600 seconds (see columns alone of grk1 in version
bushy in Table 2 and Table 4). However, E Prover in the auto mode solves only
11% more problems on the same benchmark problems with the same increase
of the time limit. A similar relative performance gap is observed across different
benchmarks.



8 J. Jakub̊uv et al.

4.5 Experiments with Clausification Methods

The Mizar problems are given as TPTP [51] problems in first-order logic (FOF).
For cvc5 we translate them to the SMT2 language [4] in the theory of uninter-
preted functions (UF). By default, cvc5 converts to clausal normal form (CNF)
internally but since instantiation-based heuristics seem sensitive to problem re-
formulation, we also experiment with external clausification. This gives us syn-
tactically different variants of the problems and we can test whether cvc5 benefits
from such alternative ways of clausification.

We use E as the external clausifier and we construct two more problem vari-
ants mincnf1 and mincnf2 . The mincnf1 version is produced by using E’s default
clausification parameters, while for mincnf2 we use a much more aggressive in-
troduction of definitions for frequent subformulas. In particular, this is achieved
by the E Prover’s option --definitional-cnf with values 24 (default) and 4,
respectively. The value indicates how many times a subformula needs to appear
for a new definition to be introduced via a new constant. The mincnf2 methods
compared to mincnf1 almost halve the average number of literals in the problems
(368.3 vs 668.2) and the average number of symbols drops to 60% (2,512.7 vs
4,124.1).

The best Grackle strategy then solves 3,231 problems in 600 s compared to
3,125 by the best CASC strategy. Both these results use the mincnf1 clausi-
fication. While the individual performance of the strategies on the externally
clausified problems is lower than on the FOF variants, they are indeed highly
complementary. Eight Grackle strategies and six CASC strategies evaluated in
600 s increase the number of the solved hard problems from 5,035 to 5,404.

4.6 Experiments on Premise Selection Slices

Based on the success with such problem reformulation, we perform additional
experiments, this time with different premise selection methods developed in
our prior work [24]. Namely, we evaluate Grackle and baseline strategies on the
bushy (i.e., not subproblem-minimized) variants of the problems, on the strongest
GNN (graph neural network [40]) premise selection slices with the threshold −1
(denoted here gnn), and on LightGBM [31] premise selection slices with the
threshold 0.1 (lgbm). These variants were found complementary in our previous
experiments [24]. In a nutshell, the trained GNN puts at all the available premises
into a large graph with the edges going between formulas, terms, subterms and
symbols, runs several iterations of a message passing algorithm in this large
graph, and ultimately uses the aggregated information for deciding which of the
premises are relevant for the conjecture. The LightGBM instead trains many
decision trees on suitable features characterizing the premises to determine their
relevance. These methods work quite differently and also sometimes recommend
premises that are quite different from the ones used by human formalizers.

We again evaluate our strategies on such problems, first with a lower (60 s)
time limit. Table 2 shows a comparative evaluation of the 60 s Grackle and CASC



Solving Hard Mizar Problems 9

version strat addon total alone new

minfof grk1 +3034 - 3034 3034 968
gnn grk1 +521 +17.17% 3555 1024 336
minfof grk3 +486 +13.67% 4041 2828 887
lgbm grk1 +264 +6.53% 4305 1260 405
minfof grk2 +187 +4.34% 4492 2772 904
bushy grk2 +177 +3.94% 4669 963 329
minfof casc10 +73 +1.56% 4742 2175 598
minfof casc13 +58 +1.22% 4800 2348 666
gnn grk3 +46 +0.96% 4846 930 280
lgbm grk2 +30 +0.62% 4876 1183 384
minfof casc14 +28 +0.57% 4904 2650 828
bushy casc13 +25 +0.51% 4929 795 239
lgbm grk3 +24 +0.49% 4953 1074 313
gnn grk2 +23 +0.46% 4976 1000 336
bushy casc14 +17 +0.34% 4993 913 302
bushy casc10 +11 +0.22% 5004 609 188
bushy grk1 +9 +0.18% 5013 962 319
bushy grk3 +8 +0.16% 5021 746 195
gnn casc13 +7 +0.14% 5028 899 287
lgbm casc10 +7 +0.14% 5035 895 262
gnn casc14 +6 +0.12% 5041 954 313
lgbm casc13 +5 +0.10% 5046 1051 309
lgbm casc14 +4 +0.08% 5050 1137 363

Table 2. Full greedy cover on FOF slices minfof , bushy, gnn, and lgbm with 60s timeout.

strategies on these slices. In the table, the column version displays the bench-
mark version and the column strat is the strategy name. The column addon
describes the addition of the strategy to the portfolio, that is, it lists the number
of problems added, and the same in percents. The column total lists the cumu-
lative performance of the portfolio up to that line. Finally, the column alone
shows the individual performance of the strategy and the column new shows
the number of Mizar problems unproved in our previous research [24,30]. The
specification of Grackle-invented strategies (grki) can be found in Table 6 while
the definitions of CASC strategies is in Table 5. These strategies are further
analyzed in Section 5.

Based on this, we evaluate the best Grackle strategy grk1 on all three slices
in 600 s. This alone raises the number of solved problems from 5,404 to 6,363.
After adding also the 60 s results, we obtain in total 6,469 hard problems solved,
of which 3,021 were not proved by ATPs before.9 This is our main result. We
have proved 21.3% of the remaining ATP-unproved problems, and increased the
total number of all ATP-proved Mizar problems to 46,738 (80.7%). About half
of the 3,021 problems (1,534) can be solved by the cvc5 CASC strategies. For

9 The lists of problems solved by the individual strategies and the strategy definitions
are available at https://github.com/ai4reason/cvc5 grackle mizar.

https://github.com/ai4reason/cvc5_grackle_mizar


10 J. Jakub̊uv et al.

Results on MML Transfer to new MML

version strat addon alone version strat addon alone

minfof grk1 +3496 3496 cnf1 grk2 +4861 4861

mincnf1 grk2 +738 3231 fof grk1 +433 4541

gnn grk1 +535 1215 cnf1 grk3 +164 4495

bushy grk1 +311 1441 fof casc13 +78 4406

minfof grk3 +298 3220 fof grk3 +53 4195

lgbm grk1 +233 1512 fof grk2 +39 4418

mincnf1 grk3 +161 3223 cnf1 grk1 +33 4811

mincnf1 casc10 +112 3125 cnf1 casc10 +17 4211

minfof grk2 +90 3146 cnf2 grk1 +14 4417

mincnf2 grk2 +62 2949 fof casc10 +12 3952

Table 3. Results on MML (left), transfer to new MML (right).

the remaining half, some of our methods (new strategies, different clausifications
or premise slices) are necessary.

The first 10 strategies in the final greedy cover are shown in Table 3 (left).
The meaning of the columns is the same as in Table 2, that is, the column version
displays benchmark version, the column strat is the strategy name, the column
addon describes the addition of the strategy to the portfolio, and alone shows
the individual performance of the strategy. We can see that the Grackle-invented
strategies clearly dominate the greedy cover. While premise selection slices gnn,
lgbm, and bushy exhibit low individual performance, they provide many new
solutions. This is often due to the alternative proofs proposed by the premise
selection methods trained over many previous proofs.

For the sake of completeness, Table 4 additionally presents extended results.
The table mixes strategies evaluated with different time limits denoted in the
column timeout. The meaning of other columns is the same as in Table 2. All
Grackle and CASC strategies solve together 6,363 Mizar problems.10

4.7 Transfer to New MML

To assess the overfitting of the methods we evaluate the best three Grackle
and the best three CASC strategies on one more benchmark. We use 13,370
bushy problems coming from newly added articles in MML version 1382. Table 3
(right) shows the results. The Grackle strategies outperform all CASC strategies,
even though the improvement is smaller than on the MML problems they were
developed for. Alternative clausification methods again provide a considerable
improvement.

10 The strategies not listed in Table 6 (like grk169baa) can be found in our repository
(Note 9).



Solving Hard Mizar Problems 11

version timeout strat addon total alone new

minfof 600 grk1 +3496 - 3496 3496 1243
mincnf1 600 grk2 +738 +21.11% 4234 3231 1192
gnn 600 grk1 +535 +12.64% 4769 1215 432
bushy 600 grk1 +311 +6.52% 5080 1441 553
minfof 600 grk3 +298 +5.87% 5378 3220 1146
lgbm 600 grk1 +233 +4.33% 5611 1512 541
mincnf1 600 grk3 +161 +2.87% 5772 3223 1092
mincnf1 600 casc10 +112 +1.94% 5884 3125 999
minfof 600 grk2 +90 +1.53% 5974 3146 1131
mincnf2 600 grk2 +62 +1.04% 6036 2949 1045
minfof 600 grk5 +49 +0.81% 6085 3086 1063
mincnf1 600 grk1 +35 +0.58% 6120 3163 1110
mincnf2 600 grk5 +31 +0.51% 6151 2909 1030
mincnf1 600 grk5 +27 +0.44% 6178 3113 1099
mincnf2 600 grk3 +22 +0.36% 6200 2851 934
minfof 600 casc13 +16 +0.26% 6216 2711 848
mincnf2 600 casc10 +14 +0.23% 6230 2695 787
minfof 600 casc10 +13 +0.21% 6243 2575 795
minfof 600 grk169baa +12 +0.19% 6255 2993 722
mincnf1 600 casc06 +12 +0.19% 6267 2334 1002
minfof 600 casc09 +11 +0.18% 6278 1064 150
minfof 600 casc14 +10 +0.16% 6288 3059 1057
minfof 30 grkd73c5e +9 +0.14% 6297 2901 986
minfof 600 casc06 +8 +0.13% 6305 2380 716
minfof 30 grk393769 +7 +0.11% 6312 2671 803
mincnf1 600 casc13 +7 +0.11% 6319 2948 977
minfof 600 casc07 +5 +0.08% 6324 2955 916
minfof 600 casc16 +5 +0.08% 6329 2976 885
minfof 30 grk1fe2d9 +5 +0.08% 6334 2770 992
mincnf2 600 casc13 +5 +0.08% 6339 2726 968
minfof 30 grk014565 +3 +0.05% 6342 2666 849
minfof 30 grk043c34 +3 +0.05% 6345 2544 769
mincnf2 600 casc06 +3 +0.05% 6348 2090 631
mincnf2 600 grk1 +3 +0.05% 6351 2817 933
minfof 600 grk4 +2 +0.03% 6353 3320 859
minfof 30 grk166bee +2 +0.03% 6355 2671 1163
minfof 30 grk04f79f +1 +0.02% 6356 2484 725
minfof 30 grk0f4750 +1 +0.02% 6357 2465 723
minfof 30 grk1499bd +1 +0.02% 6358 2238 641
minfof 30 grk1afb4a +1 +0.02% 6359 463 41
minfof 30 grk340075 +1 +0.02% 6360 2556 742
minfof 30 grk52ae2f +1 +0.02% 6361 2670 800
minfof 30 grk7dac18 +1 +0.02% 6362 173 6
minfof 30 grkba0f42 +1 +0.02% 6363 1810 509

Table 4. Full complete greedy cover on MML problems.



12 J. Jakub̊uv et al.

name cvc5 strategy options

casc1 --decision=internal --simplification=none --no-inst-no-entail

--no-cbqi --full-saturate-quant

casc2 --no-e-matching --full-saturate-quant

casc3 --no-e-matching --enum-inst-sum --full-saturate-quant

casc4 --finite-model-find --uf-ss=no-minimal

casc5 --multi-trigger-when-single --full-saturate-quant

casc6 --trigger-sel=max --full-saturate-quant

casc7 --multi-trigger-when-single --multi-trigger-priority

--full-saturate-quant

casc8 --multi-trigger-cache --full-saturate-quant

casc9 --prenex-quant=none --full-saturate-quant

casc10 --enum-inst-interleave --decision=internal --full-saturate-quant

casc11 --relevant-triggers --full-saturate-quant

casc12 --finite-model-find --e-matching --sort-inference --uf-ss-fair

casc13 --pre-skolem-quant=on --full-saturate-quant

casc14 --cbqi-vo-exp --full-saturate-quant

casc15 --no-cbqi --full-saturate-quant

casc16 --macros-quant --macros-quant-mode=all --full-saturate-quant

Table 5. CASC baseline strategies used in the experiments.

5 Analysis of the Invented Strategies

As usual with automated strategy invention, there are many new combinations
of parameters that may require deeper analysis to understand the automatically
invented behavior. That is why we make them publicly available.11 As a baseline
and as a starting point for Grackle strategy inventions, we consider 16 strategies
used in the cvc5’s CASC competition script.12 The strategies are listed in Table 5.
The best Grackle strategies are depicted in Table 6.

Interestingly, the different Grackle-invented strategies focus mainly on chang-
ing the behavior of the different components of the quantifier instantiation mod-
ule of cvc5, cf. Section 2. By default cvc5 relies on e-matching [14,36], which is
incomplete, which also means that the solver may quickly give up (return the
output unknown). The option --full-saturate-quant, runs the default mode but
if that fails to answer, the solver resorts to the enumerative mode (complete
for FOL [43]). This explains why this option is so prevalent in the invented
strategies.

11 See Note 9.
12 https://github.com/cvc5/cvc5/blob/cvc5-1.1.1/contrib/competitions/casc/run-

script-cascj11-fof

https://github.com/cvc5/cvc5/blob/cvc5-1.1.1/contrib/competitions/casc/run-script-cascj11-fof
https://github.com/cvc5/cvc5/blob/cvc5-1.1.1/contrib/competitions/casc/run-script-cascj11-fof


Solving Hard Mizar Problems 13

name cvc5 strategy options

grk1 --cbqi-vo-exp --cond-var-split-quant=agg --full-saturate-quant

--relational-triggers

grk2 --cbqi-vo-exp --full-saturate-quant --miniscope-quant=off

--multi-trigger-priority --no-static-learning --relevant-triggers

--ieval=off

grk3 --full-saturate-quant --multi-trigger-priority

--multi-trigger-when-single --term-db-mode=relevant

grk4 --cbqi-vo-exp --cond-var-split-quant=agg

--full-saturate-quant --inst-when=last-call

grk5 --cbqi-all-conflict --full-saturate-quant --inst-when=full-delay

--macros-quant --multi-trigger-priority --quant-dsplit=none

--quant-dsplit=none --trigger-sel=min-s-all --uf-ss=none

Table 6. Best five strategies invented by Grackle.

In grk1 and grk3, e-matching’s behavior is changed by changing the trigger-
generation policy. In grk1 and grk2, the option --cbqi-vo-exp affects the behavior
of the conflict-driven instantiation [45]. The option --cond-var-split-quant af-
fects the quantifier splitting policy. The option --term-db-mode=relevant enforces
a stricter policy on ground term filtering. In general, it seems that the essence
of a successful strategy is a combination of enumerative instantiations with an
appropriate trigger selection for e-matching. In the next section (Section 6) we
discuss the influence of such options on the solution of several hard Mizar prob-
lems.

6 Interesting Mizar Problems Proved

Since we are focusing on the 25% of the Mizar problems that have not been
proved by ATPs so far, the newly solved problems are typically quite involved,
with long proofs both in Mizar and in cvc5. 127 of them take more than 100
lines to prove in Mizar, and the average Mizar proof length is 41. This is one
page of a proof in a paper like this.

A previously ATP-unproved problem that seems relatively easy for many
of the cvc5 strategies is KURATO 1:613 related to the well-known Kuratowski’s
closure-complement problem.14 The theorem shows that for any setA, its Kurat14Set
(i.e., a family of 14 sets created by applying closure and complement operations
in a particular way to A) is already closed under complement and closure:

definition

13 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/kurato 1.html#T6
14 https://en.wikipedia.org/wiki/Kuratowski%27s closure-complement problem

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/kurato_1.html#T6
https://en.wikipedia.org/wiki/Kuratowski%27s_closure-complement_problem


14 J. Jakub̊uv et al.

let T be non empty TopSpace;

let A be Subset of T;

func Kurat14Set A -> Subset-Family of T equals

{ A, A-, A-‘, A-‘-, A-‘-‘, A-‘-‘-, A-‘-‘-‘ } \/

{ A‘, A‘-, A‘-‘, A‘-‘-, A‘-‘-‘, A‘-‘-‘-, A‘-‘-‘-‘ };

end;

theorem Th6: for T being non empty TopSpace

for A, Q being Subset of T st Q in Kurat14Set A holds

Q‘ in Kurat14Set A & Q- in Kurat14Set A;

The proof has 131 lines in Mizar, however it indeed seems achievable by instantiation-
based methods that gradually enumerate the applications of closure and comple-
ment to the skolems and use congruence closure when a more complex term can
be shown to be equal to a less complex term. The problem is a combination of
equational reasoning and a large case split (14 cases), which is what likely makes
it hard for the superposition-based systems. The success may indicate that a full
ATP (or AI/TP) solution of the Kuratowski’s closure-complement problem may
not be too far today, because proposing the Kurat14Set and finding automati-
cally a suitable family of 14 distinct sets (to show that 14 is indeed the smallest
number) also seems within the reach of today’s systems.

The problem ASYMPT 1:1815 is on the other hand only provable with a sin-
gle Grackle-invented strategy grk2 and external clausification, taking 62 s. The
problem states that the functions f(n) = n mod 2 and g(n) = n + 1 mod 2 are
not in the Big O relation (in any direction).

theorem

for f,g being Real_Sequence st

(for n holds f.n = n mod 2) & (for n holds g.n = n+1 mod 2)

holds ex s,s1 being eventually-nonnegative Real_Sequence

st s = f & s1 = g & not s in Big_Oh(s1) & not s1 in Big_Oh(s)

The Mizar proof has 122 lines and again goes through several case splits related
to the mod 2 values. However a lot of knowledge (often equational) about the
arithmetical expressions, modulo and inequality has to be applied too.16 The
fact that this can be done by an instantiation-based system is quite remarkable,
and probably also due to the fact that the terms that arise in the proof are
not extremely complicated thanks to the {0, 1} codomain of the functions in-
volved. The option --multi-trigger-priority seems indispensable for solving
the problem, showing the importance of the heuristics for handling instantiation
triggers. This may be an opportunity for further AI/ML methods learning even
finer control of the triggers in such systems.

Finally, theorem ROBBINS4:317 shows an equivalent condition for ortholat-
tices:

15 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/asympt 1.html#T18
16 Note that the Mizar/MPTP translation translates everything as uninterpreted func-

tions, i.e., there is no reliance on the arithmetical theories implemented in cvc5.
17 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/robbins4.html#T3

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/asympt_1.html#T18
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/robbins4.html#T3


Solving Hard Mizar Problems 15

for L being non empty OrthoLattStr holds L is Ortholattice iff

(for a, b, c being Element of L holds

(a "\/" b) "\/" c = (c‘ "/\" b‘)‘ "\/" a)

& (for a, b being Element of L holds a = a "/\" (a "\/" b))

& for a, b being Element of L holds a = a "\/" (b "/\" b‘)

The problem can only be solved by the Grackle-invented strategy 89fc24 and
it takes 137 s. The Mizar proof has 145 lines and uses a lot of equational
reasoning in lattice theory. It is quite surprising that a proof with so much
equality could not be done by the superposition based systems, and that it
can be done by cvc5. Again, triggers seem important here, together with the
--term-db-mode=relevant option which further limits the sets of possible quan-
tifier instantiations.

7 Conclusions and Future Work

We have solved 3,021 (21.3%) of the remaining 14,163 hard Mizar problems,
raising the percentage of automatically proved Mizar problems from 75.5% to
80.7%. This was mainly done by automatically inventing suitable instantiation-
based strategies for the cvc5 solver, using our Grackle system. Further improve-
ments were obtained by using alternative clausifications of the problems, and
also alternative premise selections. Such problem transformations have a sur-
prisingly large effect on the instantiation-based procedures and are likely to be
explored further when creating strong portfolios for such systems.

The invented cvc5 strategies perform well also on a set of new problems added
in a later version of the Mizar library, showing only limited overfitting. Given
today’s cvc5’s good performance on corpora such as Isabelle/Sledgehammer and
TPTP, it may be also interesting to repeat our strategy invention experiments for
the TPTP problems and for problems exported from various non-Mizar hammer
systems. In general, training instantiation-based systems in various ways is an
emerging research topic that may bring interesting improvements to some of
today’s strongest ATP/SMT methods.

Acknowledgments

Supported by the Czech MEYS under the ERC CZ project no. LL1902 POST-
MAN, by Amazon Research Awards, by EU ICT-48 2020 project no. 952215
TAILOR, by ERC PoC grant no. 101156734 FormalWeb3, by CISCO grant no.
2023-322029, and co-funded by the European Union under the project ROBO-
PROX (reg. no. CZ.02.01.01/00/22 008/0004590).

References

1. Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Artur Kornilowicz, Ro-
man Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Math-
ematical Library for interactive proof development in Mizar. J. Autom. Reason.,
61(1-4):9–32, 2018.



16 J. Jakub̊uv et al.

2. Grzegorz Bancerek, Czeslaw Bylinski, Adam Grabowski, Artur Kornilowicz, Ro-
man Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-
of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk,
Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics - In-
ternational Conference, CICM 2015, Washington, DC, USA, July 13-17, 2015,
Proceedings, volume 9150 of Lecture Notes in Computer Science, pages 261–279.
Springer, 2015.

3. Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres
Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. cvc5: A versatile and industrial-strength SMT solver. In
TACAS (1), volume 13243. Springer, 2022.

4. Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The SMT-LIB standard: Ver-
sion 2.0. In Proceedings of the 8th international workshop on satisfiability modulo
theories (Edinburgh, UK), volume 13, page 14, 2010.

5. Nikolaj Bjørner and Mikoláš Janota. Playing with quantified satisfaction. In
20th International Conferences on Logic for Programming, Artificial Intelligence
and Reasoning – Short Presentations, LPAR, volume 35, pages 15–27. EasyChair,
2015.

6. Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending
sledgehammer with SMT solvers. J. Autom. Reason., 51(1):109–128, 2013.

7. Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef
Urban. Hammering towards QED. J. Formalized Reasoning, 9(1):101–148, 2016.

8. Chad E. Brown and Cezary Kaliszyk. Lash 1.0 (system description). In IJCAR,
volume 13385 of Lecture Notes in Computer Science, pages 350–358. Springer,
2022.

9. Karel Chvalovský, Konstantin Korovin, Jelle Piepenbrock, and Josef Urban. Guid-
ing an instantiation prover with graph neural networks. In LPAR, volume 94 of
EPiC Series in Computing, pages 112–123. EasyChair, 2023.

10. Ingo Dahn. Interpretation of a Mizar-like logic in first-order logic. In Ricardo
Caferra and Gernot Salzer, editors, FTP (LNCS Selection), volume 1761 of LNCS,
pages 137–151. Springer, 1998.

11. Ingo Dahn and Christoph Wernhard. First order proof problems extracted from
an article in the MIZAR Mathematical Library. In Maria Paola Bonacina and
Ulrich Furbach, editors, Int. Workshop on First-Order Theorem Proving (FTP’97),
RISC-Linz Report Series No. 97-50, pages 58–62. Johannes Kepler Universität, Linz
(Austria), 1997.

12. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume 4963 of LNCS,
pages 337–340. Springer, 2008.

13. Martin Desharnais, Petar Vukmirovic, Jasmin Blanchette, and Makarius Wenzel.
Seventeen provers under the hammer. In ITP, volume 237 of LIPIcs, pages 8:1–
8:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

14. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. J. ACM, 52(3):365–473, 2005.

15. Azadeh Farzan and Zachary Kincaid. Strategy synthesis for linear arithmetic
games. Proc. ACM Program. Lang., 2(POPL):61:1–61:30, 2018.

16. Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation for quan-
tified formulas in satisfiability modulo theories. In Computer Aided Verification,
21st International Conference, CAV, pages 306–320, 2009.



Solving Hard Mizar Problems 17

17. Zarathustra Amadeus Goertzel, Karel Chvalovský, Jan Jakub̊uv, Miroslav Olsák,
and Josef Urban. Fast and slow Enigmas and parental guidance. In FroCoS, volume
12941 of Lecture Notes in Computer Science, pages 173–191. Springer, 2021.

18. Zarathustra Amadeus Goertzel, Jan Jakub̊uv, Cezary Kaliszyk, Miroslav Olsák,
Jelle Piepenbrock, and Josef Urban. The Isabelle ENIGMA. In ITP, volume 237
of LIPIcs, pages 16:1–16:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

19. Adam Grabowski, Artur Korni lowicz, and Adam Naumowicz. Mizar in a nutshell.
J. Formalized Reasoning, 3(2):153–245, 2010.

20. Reiner Hähnle, Manfred Kerber, and Christoph Weidenbach. Common syntax of
the DFGSchwerpunktprogramm deduction. Technical Report TR 10/96, Fakultät
für Informatik, Universität Karlsruhe, Karlsruhe, Germany, 1996.

21. Edvard K. Holden and Konstantin Korovin. Graph sequence learning for premise
selection. CoRR, abs/2303.15642, 2023.

22. Jan Hůla, Jan Jakub̊uv, Mikolás Janota, and Lukás Kubej. Targeted configuration
of an SMT solver. In CICM, volume 13467 of Lecture Notes in Computer Science,
pages 256–271. Springer, 2022.

23. Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle.
ParamILS: an automatic algorithm configuration framework. J. Artificial Intel-
ligence Research, 36:267–306, October 2009.

24. Jan Jakub̊uv, Karel Chvalovský, Zarathustra Amadeus Goertzel, Cezary Kaliszyk,
Mirek Olsák, Bartosz Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban.
MizAR 60 for Mizar 50. In ITP, volume 268 of LIPIcs, pages 19:1–19:22. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

25. Jan Jakub̊uv, Martin Suda, and Josef Urban. Automated invention of strategies
and term orderings for vampire. In GCAI, volume 50 of EPiC Series in Computing,
pages 121–133. EasyChair, 2017.

26. Jan Jakub̊uv and Josef Urban. BliStrTune: hierarchical invention of theorem prov-
ing strategies. In Yves Bertot and Viktor Vafeiadis, editors, Proceedings of the 6th
ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris,
France, January 16-17, 2017, pages 43–52. ACM, 2017.

27. Jan Jakub̊uv and Josef Urban. ENIGMA: efficient learning-based inference guiding
machine. In Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe,
and Olaf Teschke, editors, Intelligent Computer Mathematics - 10th International
Conference, CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceedings, volume
10383 of Lecture Notes in Computer Science, pages 292–302. Springer, 2017.

28. Jan Jakub̊uv and Josef Urban. Hammering Mizar by learning clause guidance. In
John Harrison, John O’Leary, and Andrew Tolmach, editors, 10th International
Conference on Interactive Theorem Proving, ITP 2019, September 9-12, 2019,
Portland, OR, USA, volume 141 of LIPIcs, pages 34:1–34:8. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

29. Mikoláš Janota, Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Fair
and adventurous enumeration of quantifier instantiations. In Formal Methods in
Computer-Aided Design, 2021.

30. Cezary Kaliszyk and Josef Urban. MizAR 40 for Mizar 40. J. Autom. Reasoning,
55(3):245–256, 2015.

31. Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree.
In NIPS, pages 3146–3154, 2017.



18 J. Jakub̊uv et al.

32. Konstantin Korovin. iprover - an instantiation-based theorem prover for first-order
logic (system description). In IJCAR, volume 5195 of Lecture Notes in Computer
Science, pages 292–298. Springer, 2008.

33. Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In
Natasha Sharygina and Helmut Veith, editors, CAV, volume 8044 of LNCS, pages
1–35. Springer, 2013.

34. Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp,
Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter.
SMAC3: A versatile bayesian optimization package for hyperparameter optimiza-
tion, 2021.

35. Roman Matuszewski and Piotr Rudnicki. Mizar: the first 30 years. Mechanized
Mathematics and Its Applications, 4:3–24, 2005.

36. Michal Moskal, Jakub Lopuszanski, and Joseph R. Kiniry. E-matching for fun
and profit. In Sava Krstic and Albert Oliveras, editors, Proceedings of the 5th In-
ternational Workshop on Satisfiability Modulo Theories, SMT@CAV 2007, Berlin,
Germany, July 1-2, 2007, volume 198 of Electronic Notes in Theoretical Computer
Science, pages 19–35. Elsevier, 2007.

37. Aina Niemetz and Mathias Preiner. Bitwuzla at the SMT-COMP 2020. CoRR,
abs/2006.01621, 2020.

38. Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark W. Barrett, and Cesare
Tinelli. Solving quantified bit-vectors using invertibility conditions. In Computer
Aided Verification – 30th International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, volume 10982, pages 236–255. Springer,
2018.

39. Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark W. Barrett, and Cesare
Tinelli. Syntax-guided quantifier instantiation. In Tools and Algorithms for the
Construction and Analysis of Systems – 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS, volume 12652, pages 145–163. Springer, 2021.

40. Miroslav Olsák, Cezary Kaliszyk, and Josef Urban. Property invariant embedding
for automated reasoning. In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilk-
ina, Michela Milano, Senén Barro, Alberto Bugaŕın, and Jérôme Lang, editors,
ECAI 2020 - 24th European Conference on Artificial Intelligence, volume 325 of
Frontiers in Artificial Intelligence and Applications, pages 1395–1402. IOS Press,
2020.

41. Michael Rawson and Giles Reger. A neurally-guided, parallel theorem prover.
In FroCos, volume 11715 of Lecture Notes in Computer Science, pages 40–56.
Springer, 2019.

42. Michael Rawson and Giles Reger. lazyCoP: Lazy paramodulation meets neurally
guided search. In TABLEAUX, volume 12842 of Lecture Notes in Computer Sci-
ence, pages 187–199. Springer, 2021.

43. Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting enumerative
instantiation. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 10806, pages 112–131, 2018.

44. Andrew Reynolds, Tim King, and Viktor Kuncak. Solving quantified linear
arithmetic by counterexample-guided instantiation. Formal Methods Syst. Des.,
51(3):500–532, 2017.

45. Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. Finding con-
flicting instances of quantified formulas in SMT. In Formal Methods in Computer-
Aided Design, FMCAD, pages 195–202. IEEE, 2014.



Solving Hard Mizar Problems 19

46. John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Rea-
soning (in 2 volumes). Elsevier and MIT Press, 2001.

47. Mikoláš Janota, Jelle Piepenbrock, and Bartosz Piotrowski. Towards learning
quantifier instantiation in SMT. In Kuldeep S. Meel and Ofer Strichman, edi-
tors, 25th International Conference on Theory and Applications of Satisfiability
Testing, SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages
7:1–7:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

48. Stephan Schulz. System description: E 1.8. In Kenneth L. McMillan, Aart Middel-
dorp, and Andrei Voronkov, editors, LPAR, volume 8312 of LNCS, pages 735–743.
Springer, 2013.

49. Martin Suda. Improving ENIGMA-style clause selection while learning from his-
tory. In CADE, volume 12699 of Lecture Notes in Computer Science, pages 543–
561. Springer, 2021.

50. Martin Suda. Vampire with a brain is a good ITP hammer. In FroCoS, volume
12941 of Lecture Notes in Computer Science, pages 192–209. Springer, 2021.

51. Geoff Sutcliffe, Christian B. Suttner, and Theodor Yemenis. The TPTP problem
library. In CADE, volume 814 of Lecture Notes in Computer Science, pages 252–
266. Springer, 1994.

52. Josef Urban. MPTP – Motivation, Implementation, First Experiments. J. Autom.
Reasoning, 33(3-4):319–339, 2004.

53. Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. J.
Autom. Reasoning, 37(1-2):21–43, 2006.

54. Josef Urban. BliStr: The Blind Strategymaker. In Georg Gottlob, Geoff Sutcliffe,
and Andrei Voronkov, editors, Global Conference on Artificial Intelligence, GCAI
2015, Tbilisi, Georgia, October 16-19, 2015, volume 36 of EPiC Series in Comput-
ing, pages 312–319. EasyChair, 2015.


	Solving Hard Mizar Problems with Instantiation and Strategy Invention 

