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Abstract

While many of the state-of-art Automated Theorem Provers (ATP) like E and Vampire,
were subject to extensive tuning of strategy schedules in the last decade, the classical ATP
prover Prover9 has never been optimized in this direction. Both E and Vampire provide
the user with an automatic mode to select good proof search strategies based on the
properties of the input problem, while Prover9 provides by default only a relatively weak
auto mode. Interestingly, Prover9 provides more varied means for proof control than its
competitors. These means, however, must be manually investigated and that is possible
only by experienced Prover9 users with a good understanding of how Prover9 works.

In this paper, we investigate the possibilities of automatic configuration of Prover9 for
user-specified benchmark problems. We employ the automated strategy invention system
Grackle to generate Prover9 strategies with both basic and advanced proof search options
which require sophisticated strategy space features for Grackle. We test the strategy
invention on AIM train/test problem collection and we show that Prover9 can outperform
both E and Vampire on these problems. To test the generality of our approach we train and
evaluate strategies also on TPTP problems, showing that Prover9 can achieve reasonable
complementarity with other ATPs.

1 Introduction

For many automated reasoning problems a combination of complementary strategies is sig-
nificantly better than better than a single strategy. For this reason, many provers support
configurable options that can be user specified or automatically tuned. This has been done for
many provers [18, 4] and led to their good performance on various benchmarks [16]. Prover9,
despite its popularity among mathematicians [9] is mostly configured manually.

In this paper, we discuss the specification of the Prover9 options using the strategy invention
system Grackle [4]. Apart from all the basic option [1] we include the various Prover9 specific
advanced options that require adaptations to the system. We also specify multi-staged domains.
Starting with a preliminary set of of basic strategies, the system derives a large number of new
strategies for the AIM dataset and for subparts of TPTP and show that Prover9 can perform
significantly better than the other provers on some of these datasets.

A considerable amount of effort has been dedicated to parameter tuning in state-of-the-
art theorem provers (mainly unpublished, unfortunately), aiming to discover a universal proof
search strategy or a portfolio of strategies. However, Grackle’s primary objective differs slightly.
Instead of seeking a generic strategy or portfolio that excels across all benchmarks or compe-
tition problems, Grackle endeavors to develop a set of strategies capable of solving as many
problems as possible from a benchmark provided by the user. This approach proves beneficial
in scenarios where users encounter problems distinct from the competition problems typically
optimized for by state-of-the-art provers.

∗Supported by the Czech MEYS under the ERC CZ project POSTMAN no. LL1902 and ERC PoC project
FormalWeb3. We are grateful to Bob Veroff for valuable comments and discussions.
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2 Prover9 and Its Proof Search Options

Prover9 is an automated theorem prover for first-order logic with equality that implements the
resolution/paramodulation calculi. It extends earlier work by McCune on Otter [13] in several
ways, including stricter rules on symbols, invidivual quantifiers for each variable, as well as
outputs, conclusions and weighting functions, and most notably a human-designed automatic
mode that we aim to improve upon in the current paper. Prover9 relies on specific term
orderings, including Knuth-Bendix Ordering (KBO), Lexicographic Path Ordering (LPO), and
Recursive Path Ordering (RPO), to guide its theorem proving process. The main algorithm,
often called the given clause loop, maintains two sets of clauses: the set of support with clauses
waiting to be processed, and the set usable with already processed clauses. At each step, it
selects a given clause from the set of support, applies all enabled inference rules combining
the given clause with all other usable clauses, and marks the given clause as usable. When a
new generated clause is found redundant, it is immediately discarded, while other clauses are
retained/kept in the usable list.

Prover9 offers numerous options that can be modified as part of the strategy included with
each problem in the LADR encodings (Prover9 does not use TPTP [16], so for TPTP problems
that we evaluate on, a LADR translation is performed in advance). The most important
parameters are the search limits, including parameters which imposes a limit on the size of the
sos list (sos limit), stops the search after n given clauses have been used (max given), stops
when more than n clauses have been retained (max kept), stops when about n megabytes of
memory have been used (max megs). Each named parameter can assume values ranging from -1
to the maximum integer, where -1 indicates an absence of limits. During each iteration of the
primary loop, Prover9 dynamically selects a specified clause from the SOS list, relocates it to the
usable list, and deduces inferences from it and other clauses within the usable list. The process
of selecting the given clause involves six distinct components which refers to the clause with the
lowest ID (the oldest clause) (age part), pertains to the (oldest) clause with the lowest weight
(weight part), corresponds to the (oldest) lightest false clause (false part), relates to the
(oldest) lightest true clause (true part), represents a (pseudo-) random clause (random part),
denotes the lightest clause that aligns with a given hint (hints part). The distinction between
false and true clauses is established through a set of interpretations. By default, negative
clauses are considered false, while non-negative clauses are deemed true. As before, all named
parameters have a permissible range from -1 to the maximum integer. Prover9 provides multiple
methods for term comparison, and the effectiveness of these methods can significantly influence
the outcome of problem-solving. While the default settings are suitable for many scenarios,
tackling challenging problems often necessitates fine-tuning the term ordering. The key decision,
made through the parameter named order, involves selecting the type of ordering: LPO, RPO,
or KBO. In addition, the option (eq defs) causes changes to the term ordering. Prover9’s
weighting function maps clauses to integers, and it is used primarily for two purposes: selecting
the given clause, and discarding inferred clauses (with the parameter max weight). There
are also many inference rules including binary resolution rules and options, hyper and Unified
Requirements (UR) resolution rules, paramodulation rules, and so on that we will optimize.

3 Grackle: System for Targeted Portfolio Invention

Grackle1 [4] is designed to automate the creation of a portfolio of solver strategies tailored to
user-provided benchmark problems, aiming to maximize the problem-solving effectiveness. By

1https://github.com/ai4reason/grackle
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inputting a set of benchmark problems, Grackle autonomously invents a diverse set of solver
strategies to tackle as many of these problems as possible. It currently integrates various
solvers, such as ATP solvers E [15], Vampire [10], Lash [3], and SMT solvers Bitwuzla [14]
and cvc5 [2]. Adding support for additional solvers is straightforward: users just need to
specify solver strategy parameters and implement a basic wrapper for solver execution. This
paper introduces an extension of Grackle to accommodate the ATP solver Prover9 [12] (see
Section 4), and assesses its performance on various first-order benchmarks (Section 5).

Grackle, building upon its predecessors BliStr [18], BliStrTune [8, 7] and EmpireTune [6],
inherits the core strategy invention algorithm from BliStr. While its predecessors are hardwired
for specific solvers (E, Vampire), Grackle expands the algorithm’s applicability to an arbitrary
solver. The BliStr/Grackle approach involves a dual phase process: a strategy evaluation fol-
lowed by a strategy invention phase. In the evaluation phase, all provided strategies are assessed
on a comprehensive set of benchmark problems, typically with a higher resource limit T . This
evaluation categorizes problems based on individual strategy performance, yielding sets of prob-
lems PS where each strategy S performs best. Subsequently, the best-performing strategy S
undergoes specialization on its corresponding problem set PS during the strategy invention
phase. This entails launching an external parameter tuning software, such as ParamILS [5] or
SMAC3 [11], on problems PS , using strategy S as the starting point. Furthermore, a reduced
resource limit t compared to the evaluation phase (T ) guides the tuning process towards enhanc-
ing performance on PS . Previous studies [18, 7, 6, 4] confirm the core notion that enhancing
performance on PS leads to improvements on other unsolved problems. The invented strategy
is then integrated into the portfolio, initiating a fresh evaluation phase. For a comprehensive
understanding of Grackle, readers are directed to its detailed exposition [4].

In order to describe the solver strategy space, Grackle employs the same approach as
ParamILS. The strategy space is described by a set of available parameters, their potential
values, and the default value for each parameter. Thus, a single strategy is represented by a
set of parameter/value pairs. The responsibility of the solver wrapper lies in translating the
strategy representation into the actual solver input. Typically, the parameters directly corre-
spond with solver command line options, though advanced transformations are feasible. We
describe several embeddings of advanced Prover9 options within a Grackle strategy space in
Section 4. Furthermore, we extend Grackle with staged strategy invention, where a vast strategy
space is subdivided into multiple smaller spaces and tuned separately. This approach resembles
hierarchical tuning in BliStrTune and EmpireTune.

Grackle/ParamILS also allows the specification of parameter conditions to describe param-
eters that are effective only when a master parameter has a specific value. For instance, the
parameter ur_nucleus_limit specifies the maximum number of literals for UR-resolution. Set-
ting the value for this parameter will only have effect when UR-resolution is activated by the
master parameter ur_resolution. This allows a more effective strategy space search.

4 Grackle Strategy Space for Prover9

Unlike the other solvers supported by Grackle thus far, Prover9 does not accept the proof
search strategy as command-line options. Instead, the proof search options are provided in a
text file passed to the solver. This enables greater flexibility, and indeed, Prover9 supports
more sophisticated constructs to guide the proof search than many other ATP provers. Some
of these are described below and addition details can be found in the Prover9 manual.2

2https://www.cs.unm.edu/~mccune/prover9/manual-examples.html
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Default space. Prover9 supports more than 100 basic options, which are either boolean,
integer-valued, or categorical. Boolean option flags are written in a Prolog-like syntax, for
example, “set(back_subsume).” or “clear(factor).” to set the corresponding flag to true or
false, respectively. The integer-valued options are written like “assign(max_weight, 100).”
to assign the selected value. The same syntax is used for categorical options, for example,
“assign(order, kbo).”. We select 61 parameters, out of which 27 are boolean, and construct
a basic Prover9 parameter space denoted as default below. For integer-valued parameters, we
manually sample the available domain depending on whether the parameter sets a weight, limit,
or otherwise. The space covers approximately 1047 different strategies, and further details can
be investigated in the source code.3

Given clause selection options control how the given clause is selected from the set
of support. The default space already contains parameters for clause selection (age_part,
weight_part, . . . ), but they can be overridden by a construct of the following form.

list(given_selection).

part(queue1, high, age , weight < 500 & -horn ) = 50.

part(queue2, high, weight, depth < 15 ) = 50.

part(queue3, low , weight, -false ) = 5.

part(rest , low , random, all ) = 1.

end_of_list.

This defines four queues for clauses that alternate given clause selection according to the ratios
specified after “=”. Each part creates one queue where clauses that satisfy the condition in
the fourth argument are sorted by the criterion given by the third argument (age, weight, or
random). The first argument is a text identifier, and the second is the queue priority (high
or low). The low-priority queues are used only when the high-priority queues are empty. The
conditions can be built from atomic properties (boolean or numeric) using logical connectives
(&, |, and - for negation). See the Prover9 manual for more details.4

To represent this construction in the Grackle space we fix the maximal number of queues
(n) as well as the maximal number of subparts in each condition (m), and we introduce a
parameter set Hi for the i-th high-priority part (where 0 < i ≤ n and 0 < j ≤ m), namely,

1. Horder
i with the domain {age, weight, random} to select the sorting criterion,

2. Hcond
i,j to select the atomic property of the j-th part in the condition,

3. Hconnect
i,j for the logical connective between condition parts j and j + 1 (and, or),

4. Hval
i,j to select the numeric value to compare the j-th condition value with,

5. Hneg
i,j to specify whether the j-th part of the condition is negated (yes or no), and

6. Hratio
i to describe the queue selection ratio.

When Hcond
i,j is set to a boolean property, then Hval

i,j is ignored. When Hcond
i,j is set to a

numeric property, then the corresponding condition is Hcond
i,j < Hval

i,j iff Hneg
i,j is false (no),

and Hcond
i,j ≥ Hval

i,j otherwise. Hcond
i,j can be additionally set to none when j > 1 to end the

condition without using all available parts. When Hratio
i is 0, then the queue is disabled and

not displayed at all independently of the other values. For the i-th queue Hi to be enabled
and displayed, all queues Hk with k < i must be enabled. Hence, when Hratio

1 = 0, then there

3https://github.com/ai4reason/grackle/blob/v0.3/grackle/trainer/prover9/default.py
4https://www.cs.unm.edu/~mccune/prover9/manual/2009-11A/advanced.html
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is no high-priority queue at all. These dependencies are expressed using ParamILS parameter
conditions (see Section 3). For example, queue1 above is described as follows.

Horder
1 = age Hcond

1,1 = weight Hval
1,1 = 500 Hneg

1,1 = no Hconnect
1,1 = and

Hratio
1 = 50 Hcond

1,2 = horn Hval
1,2 = N/A Hneg

1,2 = yes Hcond
1,3 = none

Similarly, we introduce parameters Li for low-priority queues. Additionally, we introduce a
low-priority queue that contains all generated clauses, just like the queue rest above, for the
sake of completeness. This queue is added when at least one queue is enabled.

Actions are used to change the search strategy during the proof search. For example:

generated=5000 -> assign(max_weight, 42).

changes the value of the parameter max_weight to 42 when the number of generated clauses
exceeds 5,000. In addition to the generated above, an action can be triggered by the number
of given (processed) clauses, by the number of retained clauses (kept), or by the proof search
level in the case of the breadth-first search. Only a limited subset of parameters can be
changed during the proof search.5 Similarly to the clause selection, we fix the maximal number
of actions (n), and we embed Prover9 actions to change integer-valued options in the Grackle
strategy space using several parameter sets Ai (0 < i ≤ n). Namely, we use Acounter

i to select
the trigger counter, Acond

i to select the threshold value, Aaction
i to select the parameter to be

changed, and Avalue
i to select the new value. The counter Acounter

i can be additionally set to
none to disable the action at all, and again, all previous actions Ak for k < i must be enabled
for the action Ai to be displayed. Similarly, we define actions Fi that change boolean flags.

Keep and delete rules are sets of conditions to describe clauses to keep or delete during
the proof search. When a clause satisfies one of the delete conditions, it is deleted immediately
after it is generated, unless it satisfies one of the keep conditions. Clauses not matching any
of the conditions are always kept. The syntax for the conditions is the same as in the case of
conditions for the given clause selection. Hence, once again, we fix the number of rules in each
list of conditions (n), and we fix the number of subparts for each condition (m). We define
parameter sets Ki and Di for keep and delete conditions, respectively. Just like for the clause
selection, we use parameters Kcond

i,j , Kconnect
i,j , Kval

i,j , K
neg
i,j . The only difference is that Kcond

i,j

can be set to none even for j = 1 to disable the rule altogether. Similarly for Di,j .

Staged strategy invention The full strategy space, which is later used in the experiments,
encompasses two low- and high-priority queues, one flag-changing action, three value-changing
actions, and keep/delete rules with two conditions each, where all conditions have only two
parts. This space covers approximately 10110 different Prover9 strategies. Since the space might
be quite big, we additionally implement a staged strategy invention, where the parameters are
split into several independent parts and explored sequentially. We always start with the default
space with advanced features disabled. The best parameters found are then fixed, and advanced
features are explored next. The next stage can either explore all advanced features at once,
which we call a 2-phased strategy invention, or the three kinds of advanced features can be
explored one by one, which gives rise to a 4-phased process. This is similar to the hierarchical
tuning in BliStrTune/EmpireTune.

5Only 9 parameters are currently supported in Prover9 even though the manual lists more.
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space
solved single strategies inventions

total new unique best new needed advanced total failed

default 552 +238 6 504 79 9 0 113 34

full 599 +285 51 494 101 14 49 136 35

2-staged 507 +193 1 414 75 16 69 84 9

4-staged 495 +181 2 449 52 8 52 52 0

Table 1: Grackle strategy invention statistics on AIM train problems.

Figure 1: Problems solved by Grackle over time on AIM (left) and TPTP/NUM (right).

5 Experiments with Grackle and Prover9

Experiments on AIM. We evaluate6 Grackle strategy invention for Prover9 on the AIM
benchmark used in the CASC 2016 ATP competition [17], consisting of 1020 training and
200 evaluation problems from a large theorem proving project in loop theory [9]. We launch
4 Grackle runs with strategy spaces described in Section 4: (1) with the default space, (2)
with the full space including default and advanced features, (3) 2-staged strategy invention
consequently tuning the default and advanced features, and finally (4) the 4-staged invention,
tuning the advanced features one by one. All four runs use the time limit of T = 10 seconds for
each prover run in the evaluation phase, t = 5 seconds in the invention phase, and the invention
phase is launched for S = 5 minutes. In the case of staged invention, the time limit S is the
limit for a single stage. All runs start with the same 5 initial strategies that can solve together
314 training problems (with a time limit of T ). We allow Grackle to run for 24 hours, and each
run uses 16 CPU cores.

The results of Grackle invention are in Table 1. The column total shows the total number of
problems solved by all invented strategies, new shows problems unsolved by the initial strategies,
and unique states the number of problems not solved by other runs. The column single best
shows the performance of the best invented strategy. Columns strategies describe how many
new strategies were invented, how many are needed to cover the total problems from each run,
and how many of the strategies use advanced Prover9 features. Columns inventions show how
many strategies were invented in total, and how many times the invention failed, which happens
when the invented strategy is already known. We can see that the full space performs the best,
solving 285 new problems. On the other hand, the best strategy comes out from the run with

6On two AMD EPYC 7513 32-Core processors @ 3680 MHz, with 2 GB memory limit per single prover run.
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prover adds adds% sum alone

Prover9 +91 - 91 91

Vampire +0 +0% 91 50

E +0 +0% 91 36

Figure 2: Results on AIM test problems. Greedy cover (left) and Venn diagrams (right).

the default space. The staged runs invented fewer strategies since the invention takes longer
(2S and 4S). All the runs, except the default, have the freedom to choose whether to use
advanced features or not. Roughly half of the strategies in the full space run use advanced
features. The 4-staged run seems to enforce advanced features, but it does not lead to better
overall performance in this experiment. The staged runs also minimize failed inventions. The
graphical representation of the Grackle invention is in Figure 1 (left). The graph shows the
number of solved problems over time during the Grackle runs.

We conducted additional runs with different settings (S ∈ {15, 30}), resulting in a collection
of 1,101 Prover9 strategies. Grackle has already evaluated all strategies with a time limit of T ,
enabling us to construct a greedy cover sequence comprising the 10 best strategies and evaluate
it on the test problems. The greedy cover is constructed by starting with the strongest strategy,
removing the problems it solves, and iterating this process as long as there is a strategy that
solves some problems. To mitigate overfitting, we split the training problems in half, construct
the greedy cover on one half, and evaluate it on the other. This process is iterated several
times to find the least overfitting portfolio of 10 strategies, which are then evaluated on the test
problems with a time limit of 30 seconds. Its performance can be compared with that of state-
of-the-art theorem provers E (autoschedule mode) and Vampire (casc mode), both launched
for 300 seconds. The results are presented in Figure 2 as a greedy cover sequence (left), where
alone shows the individual performance of each solver. Notably, Prover9 solved a remarkable
91 problems, including all problems solved by the other solvers. The graphical representation of
the solved problems in the form of proportional Venn diagrams is displayed in Figure 2 (right).

Experiments on TPTP. Next, we evaluate Grackle strategy invention on TPTP prob-
lems [16]. As an initial assessment, we launch selected Grackle strategies, as well as Vampire
and E, to discover that while the overall performance of Prover9 cannot compare to that of
the state-of-the-art solvers, Prover9 still provides valuable contributions. TPTP problems are
divided into categories, and we discover that the most significant contribution is in the cate-
gory NUM, which contains problems from Number Theory. Following the main idea behind
Grackle, which aims to enhance performance in areas where one performs best, we conduct
several Grackle runs on 1,094 NUM problems, using the same settings as for AIM problems.

While the initial strategies solve 448 problems, the final portfolio of 23 strategies solves 619
(with 10 seconds per strategy/problem). We compare this performance with Vampire and E,
both evaluated with a time limit of 300 seconds. The problems solved over time are depicted in
Figure 1 (right). It is noteworthy that the full domain again performs the best, but the 4-staged
approach slightly outperforms the default domain. The comparison with Vampire and E can be
found in Figure 3. We observe that the Prover9 portfolio even slightly outperforms Vampire,
and that our strategies solve significantly different problems than the other two solvers, resulting
in 770 problems solved by joint efforts. Note that while problems solved by E are basically a
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prover adds adds% sum alone

Prover9 +619 - 619 619

Vampire +150 +24.23% 769 611

E +1 +0.13% 770 541

Figure 3: Results on TPTP/NUM problems. Greedy cover (left) and Venn diagrams (right).

subset of those solved by Vampire, Prover9 excels on different problems.

Different prover versions. In the above experiments, we used E version 2.6 and Vampire
version 4.5.1. Since newer versions exist, namely E version 3.0.3 and Vampire version 4.8,
we also evaluate these on the data. Interestingly, Vampire 4.8 shows significant improvement
on AIM, solving 79 problems instead of 50, but it exhibits a notable decline on TPTP/NUM
problems, where it solves 553 instead of 611. Conversely, the new version of E performs worse
on both benchmarks, solving only 18 instead of 36 on AIM, and only 523 instead of 541 on
TPTP/NUM. Vampire 4.8 solves 4 AIM problems not solved by Prover9/Grackle (which solves
91). The performance decrease is probably caused by optimization of solver strategy schedules
for different problems.

6 Conclusions and Future Work

We have integrated support for Prover9 into the automated strategy invention system Grackle
and assessed its capabilities across two distinct benchmark problem sets. The findings reveal
that Prover9’s performance can be significantly enhanced through our fully automated strategy
invention process. By comparison, Prover9 in its default auto mode can tackle 41 AIM problems
and 512 on TPTP/NUM, whereas our strategies solve 91 and 619 within the same timeframe.
Surprisingly, Prover9 can even outperform state-of-the-art provers, at least on the problem
domains explored in this paper. The best invented strategies are available for download.7

For the AIM problems, the dataset is split in train/test parts. Since TPTP has been
experimented with for many years in CASC, we did not perform such a split for NUM, hence, it
is anticipated that Grackle-invented strategies will be specialized for NUM problems. However,
this is not a concern in the primary scenario intended for Grackle, where users aim to solve
as many problems as possible from a provided benchmark set. Out of curiosity, we evaluated
all strategies invented on AIM train problems on AIM test problems as well (with 30 s limit).
Surprisingly, we discovered that the top 10 strategies collectively solved an impressive 111 AIM
test problems. From the experiments with different solver versions, it is evident that strategy
schedules of other provers are also subject to similar specialization/overfitting. This raises the
question of whether having a single or several universal strategy schedules is the only possibility,
or whether it is feasible to automatically configure the prover on the fly. This question is left
for future research.

7https://github.com/ai4reason/grackle/blob/v0.3/examples/prover9-strategies.tar.gz
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