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Abstract. Pre-trained Large Language Models (LLMs) are beginning
to dominate the discourse around automatic code generation with natu-
ral language specifications. In contrast, the best-performing synthesizers
in the domain of formal synthesis with precise logical specifications are
still based on enumerative algorithms. In this paper, we evaluate the abil-
ities of LLMs to solve formal synthesis benchmarks by carefully crafting a
library of prompts for the domain. When one-shot synthesis fails, we pro-
pose a novel enumerative synthesis algorithm, which integrates calls to
an LLM into a weighted probabilistic search. This allows the synthesizer
to provide the LLM with information about the progress of the enumer-
ator, and the LLM to provide the enumerator with syntactic guidance
in an iterative loop. We evaluate our techniques on benchmarks from
the Syntax-Guided Synthesis (SyGuS) competition. We find that GPT-
3.5 as a stand-alone tool for formal synthesis is easily outperformed by
state-of-the-art formal synthesis algorithms, but our approach integrat-
ing the LLM into an enumerative synthesis algorithm shows significant
performance gains over both the LLM and the enumerative synthesizer
alone and the winning SyGuS competition tool.

1 Introduction

Program synthesis is the task of automatically generating programs that satisfy
a given specification. It has applications in planning [13], program analysis [16],
data-wrangling [17] and more. The dominant techniques for formal program syn-
thesis are based around enumeration [37, 4, 21], and a key challenge is how to
guide this enumeration to search a huge space of possible programs efficiently.
Syntax-Guided Synthesis(SyGuS) [2] allows the user to restrict the space of
possible programs using a context-free grammar, and, in later work, this has
been extended using pre-trained probabilistic models such as higher-order gram-
mars [27] and neural networks [31], trained on a dataset of solved synthesis
problems. However, obtaining these datasets for pre-training is challenging.

In parallel, the use of pre-trained large language models (LLMs) to gen-
erate code is rapidly gaining traction, with impressive results being obtained
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on benchmarks with natural language specifications and input-output exam-
ples [14]. These benchmarks are very different in style to the logical specifica-
tions that formal program synthesis tackles, as most are procedural code, in
Python, and solve classic programming exercise questions that might be asked
of students or interview candidates, and that one may find in abundance on
sources used in training data such as StackOverflow and GitHub. In contrast,
formal program synthesis benchmarks, such as those in the SyGuS competition,
require functional code, which must satisfy precise logical specifications derived
from problems such as program analysis [16], and are certainly less abundant in
sources of publicly available code for training machine learning models.

In this paper, we set out to investigate whether off-the-shelf large language
models can solve formal program synthesis problems. We craft a library of
prompts, which enables us to solve roughly 50% of the SyGuS competition
benchmarks. We hypothesize that, in the cases where the LLM returns only
incorrect solutions, the correct solutions are most often in the vicinity of the
incorrect solutions, and that, by searching in the neighborhood of the incorrect
solutions, we may be able to guide an enumerative synthesizer to find a solution
faster. To that end, we construct a probabilistic Context-Free Grammar (pCFG)
based on the incorrect solutions proposed by the LLM, and use this to guide an
enumerative synthesizer within a CounterExample Guided Inductive Synthesis
(CEGIS) loop.

Our final contribution is a full integration of these techniques in a novel
CEGIS algorithm with an inline syntactic oracle, in the form of an LLM that is
queried by an enumerative synthesis phase. We incorporate information obtained
during the synthesis search into the queries, prompting the LLM with partially
enumerated functions, incorrect solutions, and counterexamples, and requesting
that it provide “helper functions”, which we use to update the pCFG guiding
the enumerator.

We implement all three techniques described above and evaluate them on
benchmarks from the Syntax-Guided Synthesis competition. We compare with
two baselines: the first is an enumerative synthesizer where all rules in the gram-
mar are given equal likelihood, and the second is cvc5 [7], the state-of-the-art
SyGuS solver. All techniques easily outperform the baseline enumerator, and
the final technique outperforms cvc5. Our results demonstrate that, whilst large
language models do have the potential to make significant contributions in the
domain of formal program synthesis, this can currently only be achieved by com-
bining these techniques with existing algorithms in the literature. Enumerative
synthesis is not yet obsolete!

The main contributions of our work are as follows: A set of prompts for
prompting a pre-trained Large Language Model to solve formal program syn-
thesis problems (Section 4.1); A method for guiding an enumerative synthesizer
using LLM-generated probabilistic context-free grammars (Section 5.1); A novel
approach to integrating an LLM into an enumerative synthesizer (Section 6);
And, finally, an implementation and evaluation of all of the above on bench-
mark problems taken from the Syntax-Guided Synthesis competition. The re-
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sults outperform cvc5, the state-of-the-art synthesizer, as well as our baseline
enumerators.

2 Background

Program synthesis focuses on automated program creation that satisfies a high-
level specification, which can be comprehensive, such as a basic, unrefined pro-
gram, or incomplete, like a logical formula or a set of test cases.

Definition 1 (Context-Free Grammar, CFG). A context-free grammar is
a 4-tuple G = (V,Σ,R, S). V is a finite set of variables also known as non-
terminal symbols. Σ with Σ ∩ V = ∅ is called the set of terminal symbols or
alphabet. R ⊆ V × (V ∪ Σ)∗ is a finite relation describing the production rules
of the grammar. We define RΣ = R ∩ V × Σ∗, i.e. the set of rules restricted
to those whose right-hand side only consists of terminal symbols. Elements of
(V ∪ Σ)∗ are known as words in sentential form. S ∈ V is the start symbol of
the grammar G.

Given a context-free grammar G = (V,Σ,R, S) with x, y ∈ (V ∪Σ)∗ and (α, β) ∈
R we say that xαy yields xβy, written xαy → xβy. We say that x derives y
written x → ∗ y if either x = y or x → x1 → . . . xn → y for n ≥ 0. Finally, we
define the language of a grammar LG = {s ∈ Σ∗ | S → ∗ s}. We now introduce
two extensions of context-free grammars:

Definition 2 (Weighted Context-Free Grammar, wCFG). A weighted
context-free grammar(wCFG) [29, 30] is a 5-tuple WG = (V,Σ,R, S,W ) such
that (V,Σ,R, S) is a context-free grammar and W is a function assigning a
numeric value to each rule r ∈ R.

Definition 3 (Probabilistic Context-Free Grammar, pCFG). A proba-
bilistic context-free grammar [29, 30] is a 5-tuple PG = (V,Σ,R, S,P) such that
(V,Σ,R, S) is a context-free grammar and P is a probability mass function as-
signing a probability P[r] to each rule r ∈ R. PΣ is the probability mass function
that assigns a probability to PΣ [r] to each rule r ∈ RΣ. A pCFG is a specific
instance of a wCFG.

In general, program synthesis is concerned with the generation (i.e., synthe-
sis) of a program that satisfies a certain specification. Syntax-guided synthesis
(SyGuS) describes a standardized function synthesis format that precisely de-
fines a synthesis problem within first-order theories [8]. We will use the notation
ϕ[F 7→ f ] to denote the replacing of all occurrences of F in ϕ with f while
substituting all arguments to f by the arguments of F in the same order.

Definition 4 (Syntax-Guided Synthesis, SyGuS). A SyGuS problem is a
4-tuple ⟨T,G, ϕ, F ⟩ such that T is a first-order theory, G is a context-free gram-
mar, ϕ is a first-order formula, and F is a function symbol that may occur in
ϕ. A solution to a SyGuS problem ⟨T,G, ϕ, F ⟩ is either a function f such that
T |= ϕ[F 7→ f ] and f ∈ LG, or proof that no such function can exist.
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SyGuS closely follows the syntax and semantics of SMT, and hence T usually
refers to theories that are also common in SMT. Usually, SMT solvers are queried
in the background of SyGuS solvers to verify solution candidates. This connection
is made explicit in Counter-Example Guided Inductive Synthesis (CEGIS) [39].
CEGIS is a family of algorithms that alternate between a synthesis phase, which
searches for a candidate solution that works for a subset of inputs, and a verifi-
cation phase, where the candidate is checked against all possible inputs. If the
verification fails, a counterexample is passed back to the synthesis phase and
appended to the subset of inputs used to guide the search. The synthesis phase
is often implemented as an enumerative search. An example SyGuS problem is
shown in Example 1.

Generative Large Language Models Generative Large Language Models
(LLMs) are advanced Artificial Intelligence (AI) systems based on transformer
models and trained on vast datasets to produce human-like text, followed by
human-provided instruction prompts [10]. One application of LLMs is generating
code from natural language specifications [14].

3 Overview

In this work, we first present a carefully tailored set of prompts that we use to
evaluate an LLM’s ability to solve formal synthesis problems. We construct an
iterative loop where we prompt the LLM, verify the candidate solution, and if
the solution fails, we prompt the LLM again.

LLM Verifier

Enumerator

SolutionPrompt

Grammar

Candidate
Program

Prompts

Rule
Weights

Candidate
Program

Fig. 1. An overview of pCFG-synth. Both the verifier and the LLM have access to the
specification ϕ (which is used to generate the prompt for the LLM, as well as to check
whether candidate programs are correct).

We then present two methods for integrating syntactic guidance from pre-
trained LLMs into an enumerative CEGIS algorithm. The first method, shown
in Figure 1, prompts an LLM for solutions to the benchmark, and generates a
pCFG from these solutions before deploying an enumerative synthesizer, increas-
ing the chance of the LLM solving the synthesis problem outright. We refer to
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this method as pCFG-synth. The second method, shown in Figure 2, integrates
the prompting within the enumerative synthesizer, allowing the prompts to in-
corporate additional information obtained during the synthesis process. Here,
instead of asking the LLM to provide a full solution, we ask it to provide helper
functions to help “a student” complete the partially enumerated program. We
use the responses to augment the set of production rules in the grammar and up-
date the weights across the existing production rules. We refer to this approach,
which integrates an LLM into an enumerative synthesizer, as iLLM-synth. In
this section, we give an overview of these two approaches. The details of the
components of both approaches and their relative performances are found in the
subsequent sections. We integrate both approaches with a probabilistic top-down
enumerator and a weighted search based on the A∗ algorithm [19, 27].

(set -logic LIA)
(synth -fun fn ((vr0 Int) (vr1 Int) (vr2 Int)) Int)
(constraint (>= (fn vr0 vr1 vr2) vr0))
(constraint (>= (fn vr0 vr1 vr2) vr1))
(constraint (>= (fn vr0 vr1 vr2) vr2))
(constraint (or (= vr0 (fn vr0 vr1 vr2)) (or (= vr1 (fn vr0 vr1 vr2)) (=

vr2 (fn vr0 vr1 vr2)))))
(check -synth)

Example 1. A SyGuS specification that asks for a program that synthesizes the
maximum of 3 inputs. We omit some the grammar and variable declarations for brevity.

Enumerator Verifier

LLM

SolutionGrammar

Candidate
Program

Counterexample

Partial Program
+Previous Solutions
+Counterexample

Helper
Function

Fig. 2. An overview of iLLM-synth. Both the verifier and the enumerator have access
to the specification ϕ (which is used to generate the prompt for the LLM, as well as to
check whether candidate programs are correct)

4 Stand-alone LLM

In this section, we describe how we prompt the LLM as a stand-alone synthe-
sizer. These prompting techniques are then also deployed by pCFG-synth. We
use GPT-3.5-turbo as the LLM. Note that the model is not fine-tuned to this
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problem setting. Furthermore, we rename any functions and variables in the Sy-
GuS benchmarks to generic names to avoid the LLM producing solutions solely
based on the function names.

4.1 Prompting the LLM

We design a library of prompts for program synthesis problems with logical spec-
ifications and a single target function to synthesize. These prompts are deployed
in an iterative loop, until a correct solution is obtained, or the library of prompts
is exhausted.

Prompting is an art rather than a science, but we hypothesize that it is
better to ask the LLM to give a solution in a language that is more common in
the training data, and then request it to translate it into our desired SMT-LIB,
and experiment with both Python and Lisp. On a subset of 50 benchmarks,
we observed that soliciting responses in Lisp resulted in a 6% enhancement
in the resolution of benchmarks compared to utilizing Python (and both were
better than asking for SMT-lib directly). It is also reported in the literature that
the efficacy of LLMs can be augmented by including emotional stimuli within
prompts [28]. Incorporating the emotional prompt leads to an 8% increase in the
likelihood of generating accurate solutions compared to standard, non-emotional
prompts in our study. Details of our initial prompting experiments are in the
extended version of this paper 3.

The following is an example prompt and response sequence for the LIA ex-
ample shown in Example 1:

(set -logic LIA)
(declare -var vr0 Int)
(declare -var vr1 Int)
(declare -var vr2 Int)
(constraint (>= (fn vr0 vr1 vr2) vr0))
(constraint (>= (fn vr0 vr1 vr2) vr1))
(constraint (>= (fn vr0 vr1 vr2) vr2))
(constraint (or (= vr0 (fn vr0 vr1 vr2)) (or (= vr1 (fn vr0 vr1 vr2)) (=

vr2 (fn vr0 vr1 vr2)))))
(check -synth)
You are a good synthesizer. Do you know what "(define -fun fn ((vr0 Int) (

vr1 Int) (vr2 Int)) Int" is doing?
Write only one Lisp -like method "defun fn" without any built -in methods or

arrays.
Requirements:
1. No built -in functions.
2. Never violate the SMT -LIB constraints above.
3. Pay attention to the define functions.
4. Ensure the response contains one and only one function.
5. Do not include any iterations , BitVec , or Int notations in the function

body.
Write it correctly , or I will lose my job and 100 grandmothers will die.

Don ’t disappoint me.
Write only one Lisp -like method "defun fn" that never violates the SMT -LIB

constraints above.

Prompt 1. Prompt for Example 1.

3 https://arxiv.org/html/2403.03997
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(defun fn (vr0 vr1 vr2)
(ite (>= vr0 vr1) (ite (>= vr0 vr2) vr0 vr2) (ite (>= vr1 vr2) vr1 vr2

)))

Response 1. Response from LLM after Prompt 1.

You are close to the right answer. Take another guess. You have to try
something different , think harder. Write a different Lisp method that
never violates the SMT -LIB constraints above again.

Prompt 2. Prompt requesting a revised solution.

Prompts for invariant synthesis Invariant synthesis is a specific instance of
program synthesis: given a pre-condition pre(x), transition-relation trans(x, x′)
and post-condition post(x), the synthesizer is required to provide an invariant
inv that satisfies the following constraint: ∀x, x′.pre(x) =⇒ inv(x) ∧ (inv(x)∧
trans(x, x)) =⇒ inv(x′) ∧ inv(x) =⇒ post(x). We find that LLMs struggle
to reason about constraints presented in the above format. Inspired by “chain-
of-thought” [42] prompting, where the LLM is asked to provide a step-by-step
explanation, we augment our prompting strategy for invariants by asking the
LLM first to explain the constraints. After requesting this explanation, we follow
the same interactive prompt strategy as before.

Lisp to SMT-LIB Converter The final prompts in our prompt library are
to ask the LLM to convert any functions given in Lisp to correct SMT-LIB
functions:

You are a good programming language converter. Convert the Lisp function
to SMT -LIB:

Based on the Lisp code provided above , convert the ’defun ’ Lisp -like code
to a corresponding SMT -LIB function. Use SMT -LIB syntax starting with
(define -fun

Follow these guidelines:
1. Only give me the function definition starting with ’(define -fun ’.
2. Pay attention to types. If there are bit -vector terms , they need to be

of the same width.
3. Ensure the SMT -LIB function contains one and only one function

definition starting with ’(define -fun ’.
4. Do not include any iterations , BitVec , or Int notations in the function

body.
5. Use the assigned values from the Lisp code during translation.
6. Do not introduce any variables that do not exist in the Lisp function.
Rules for SMT -LIB: +, -, *, ite , >, =, <, >=, <=, and , or, not , true ,

false.

Prompt 3. Request for converting Lisp to SMT-LIB code for response 1.

Upon receiving a response from the LLM, we extracted the Lisp program and
subjected it to format verification. The resulting SMT-LIB code is represented:

(define -fun fn ((vr0 Int) (vr1 Int) (vr2 Int)) Int
(ite (>= vr0 vr1) (ite (>= vr0 vr2) vr0 vr2) (ite (>= vr1 vr2) vr1 vr2

)))

Program 1. LLM-Generated program for Example 1.
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5 Synthesis with pCFG Guidance: pCFG-synth

We hypothesize that, if the LLM did not propose a correct solution, the cor-
rect solution is likely to be roughly in the same “area” as the incorrect solu-
tions it suggested, and so our synthesis algorithm aims to prioritize this area
when searching for candidate programs. For simplicity, we use a simple weighted
Context-Free Grammar to represent the area of solutions proposed by the LLM.
We then present methods for searching the space: the first is a probabilistic top-
down search, shown in Algorithm 3; the second is based on an adaptation of the
A∗ algorithm [19, 27], and we integrate both into CEGIS searches as shown in
Algorithm 1. The verification phase in Algorithm 1 is implemented via a call to
an SMT solver, which checks, for a candidate solution f , whether there exists
an input such that the specification is violated, i.e., ∃x.¬ϕ[F 7→ f ].

Algorithm 1 CEGIS with weighted search

1: procedure CEGIS(WG, ϕ)
2: cex← ∅
3: while true do
4: prog ← Enumerate(WG, ϕ, cex, )
5: if verify(prog, ϕ) then
6: return prog
7: else
8: c← verify.get cex
9: cex← cex ∪ {c}

5.1 Inferring a Weighted CFG

In this section, we describe how we infer a weighted Context-Free Grammar from
the incorrect solutions produced by the large language model.

Definition 5 (Derivations). Given a context-free grammar G, and a sentence
s, the sentence is in the language of the grammar if S →∗ s, where S is the start
symbol of the grammar. The derivation of s from S is a sequence of rules such
that S

r0−→ s1
r1−→ . . . sn

rn−→ s and r0 . . . rn ∈ R. We denote the derivation of s
by the sequence of rules r0, . . . rn as Ds = {r0, . . . rn}. The left-most derivation
is a derivation such that all rules expand the left-most non-terminal symbol in
the sentential form.

From here on in, all derivations are assumed to be the left-most derivation,
and we assume the grammar is unambiguous, i.e., there exists a single left-most
derivation for any sentence in the language.

Given a set of possible programs prog ∈ LG generated by the language
model, we calculate a weight for each rule ri ∈ R as the number of times that
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rule appears in the left-most derivations of the programs. That is,

w[ri] =
∑

progi∈prog

|ri| ∈ Dprogi , (1)

where |ri| is the number of times ri appears in the derivation. For example,
consider Response 1: the weights are calculated as w[r1] = 3, w[r2] = 3, w[r3] =
3, w[r4] = 4, w[r5] = 3. These correspond to the rules from Example 1:

r1 : Start → (ite StartBool Start Start)

r2 : Start → vr0

r3 : Start → vr1

r4 : Start → vr2

r5 : StartBool → (>= Start Start).

Probabilistic Context-Free Grammar Given a wCFG, we derive a simple
pCFG by assuming that the probability associated with a rule ri : α → β is equal
to the weight w[α → β] of ri, divided by |π[α]| = |α × (Σ ∪ V )∗ ∈ R|, i.e., the
total number of rules that could be applied to α. That is P[α → β] = w[α→β]

|π[α]| .

By extension, PΣ [α → β] = w[α→β]
|π[α] | iff β ∈ Σ and 0 otherwise.

5.2 Probabilistic Guided Search

The aim of our algorithm is thus to search the area of programs closest to
those with the highest weights in the wCFG, or highest probabilities in the
corresponding pCFG. We adapt and implement two search methods for doing
this: the first is a probabilistic top-down search. To this end, we first introduce
the notion of a grammar tree.

Definition 6 (Grammar tree). We represent the search space as a grammar
tree. Given a context-free grammar G = (V,Σ,R, S), the graph of sentential
forms, or grammar tree, T (G) defined inductively: S is the root of the tree, and
for all x, y ∈ (V ∪ Σ)∗ with x → y and x being a node of the tree, then y is a
child node of x.

To implement our probabilistic guided search, we extend this definition to a
probabilistic grammar tree. Given a pCFG, PG = (V,Σ,R, S,P), a probabilistic
grammar tree T (PG) is a directed labelled graph as defined before, but each
edge has a corresponding weight ω given by P. We limit the edges to only those
needed for the left-most derivations, and so E and ω are defined as follows:

E = {xαy α→β−−−→ xβy |α → β ∈ R, x ∈ Σ∗, α ∈ V, β, y ∈ (V ∪Σ)∗},
ω[α → β] = P[α → β].
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Note that this guarantees that, for any node, the sum of the weight on the edges
leaving that node is equal to 1.

Algorithm 2 Probabilistic top-down enumerator for pCFG-synth

1: procedure Enumerate(WG, ϕ, cex )
2: prog ←WG.S
3: d← 0
4: previousProgs← ∅
5: PG ← BuildPCFG(WG)
6: while 1 do
7: if prog ∈ Σ∗ then
8: previousProgs← previousProgs ∪ prog
9: if ∀x⃗ ∈ cex. ϕ(prog, x⃗) then
10: return prog
11: else
12: prog ← S
13: d← 0
14: prog ← ReplaceNonTerminals(prog, PG)
15: d← d+ 1
16: if d = maxDepth then
17: prog ← CompleteProgram(prog, PG)
18: if prog ∈ PreviousPrograms then
19: prog ← S
20: d← 0
21: procedure ReplaceNonTerminals(prog, PG)
22: NT ← list of nonterminals in prog
23: for α ∈ NT do
24: (α× β) ∼ Cat(|π[α]|, {P[π[α]1],P[π[α]2], . . .}) ▷ Sample from distribution
25: prog ← prog.{α→ β} ▷ apply rule to prog

26: return prog

27: procedure CompleteProgram(prog, PG)▷ Replaces non-terminal symbols with
terminal symbols

28: NT ← list of nonterminal symbols in prog
29: for α ∈ NT do
30: (α× β) ∼ Cat(|π[α]|, {PΣ [π[α]1],PΣ [π[α]2], . . .}) ▷ Sample
31: prog ← prog.{nt→ nt′} ▷ apply rule to prog

32: return prog

We search this grammar tree using a top-down enumerative synthesizer,
shown in Algorithm 2. This enumerates possible programs in the grammar in
a top-down manner, expanding non-terminals by randomly sampling from the
categorical distribution over the production rules. That is, the search algorithm
starts by considering the node corresponding to the start symbol S. It then
chooses the next node by sampling from a categorical distribution with event
probabilities corresponding to the probabilities on the outgoing edges of the
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current node. The categorical distribution is a generalization of the Bernoulli
distribution and describes the possible results of a random variable that can
take one of K possible categories, with the probability of each category sepa-
rately specified. Formally, to sample a rule α × β to apply to a non-terminal
symbol α, we sample from the distribution:

(α× β) ∼ Cat(|π[α]|, {P[π[α]1],P[π[α]2], . . .}),

where |π[α]| is the number of rules that could be applied to α and π[α]i is
the ith of those rules, and {P[π[α]1],P[π[α]2], . . .} is a vector of probabilities
corresponding to those rules.

We then apply the sampled rule, and repeat the process. We use prog.{α →
β} to indicate the result of substituting the first occurrence of α in a partial
program prog with β.

With a naive implementation of this algorithm, the probability of our al-
gorithm generating any sentence s is equal to

∏
ri∈Ds

P[ri], where Ds is the
left-most derivation of s. However, this will result in the algorithm generating
the same programs multiple times, so we modify this algorithm in two ways:
First, if we enumerate a complete program that we have seen before, we dis-
card it; Second, we give a maximum depth limit, and if we are approaching the
maximum depth limit, we sample only from the outgoing edges that result in
complete programs.

Algorithm 3 pCFG-synth

1: procedure pCFG-synth(prompts, ϕ,G)
2: conv ← [ ]
3: progs← ∅
4: while prompts ̸= ∅ do
5: response← LLM(prompts.pop(), conv)
6: conv.append(response)
7: currentProg ← ExtractProgram(response)
8: if ∀x⃗ ϕ(currentProg, x⃗) then
9: return currentProg
10: else
11: progs← progs ∪ currentProg

12: W ←WeightCounter(prog,G)
13: WG ← (G,W )
14: prog ← CEGIS(WG, ϕ)
15: return prog

5.3 Weighted A∗ Search

We implement a second variation of pCFG-synth using the A∗ weighted search
algorithm as the underlying enumerator. A∗ is a search algorithm that chooses
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which paths to extend based on minimizing the cost of the path so far and an
estimate of the cost required to extend the path to the goal, i.e., it expands
nodes that minimizes f(x) = c(x) + g(x), where c(x) is the cost of the path to
x so far and g(x) is the estimated cost of reaching a goal node from x. This
technique was first used for guiding synthesis by Lee et al. [27], and we adapted
the algorithm from their work.

To implement our A∗ search, we extend the definition of the grammar tree
to a weighted grammar tree. Given a pCFG PG = (V,Σ,R, S,P), a weighted
grammar tree T (WG) is a directed labeled graph as defined before, but each
edge has a corresponding weight, given as follows:

ω(α → β) =

{
− log2(P[α → β]) if P[α → β] > 0,

inf otherwise.

We use the negative log of the probability to ensure that higher weighted edges
correspond to those with very low probabilities.

Algorithm 4 A∗ search for pCFG-synth

1: procedure Enumerate(PG, ϕ, cex )
2: Q = {0, S} ▷ Priority queue of candidates
3: while Q ̸= ∅ do
4: (f, prog)← Q.pop() ▷ Remove program with minimal f
5: if ∀x⃗ ∈ cex. ϕ(prog, x⃗) then
6: return prog

7: for (nt ∈ prog)× nt′ do
8: if (nt× nt′) ∈ PG.R then ▷ For all applicable rules
9: prog ← prog.{nt→ nt′} ▷ apply rule to prog
10: Q← Q ∪ (c(prog) + g(prog), prog)

The A∗ algorithm, shown in Algorithm 4, relies on two key functions: first,
the function c(x), which computes the cost of the path so far, and second, the
function g(x) which estimates the cost to extend the path to a goal node. As-
suming x is a sentential form in our language, c(x) and g(x) are given by:

c(x) =
∑

ri∈Dx

− log2 (P[ri]) , g(x) =

{
0 if x ∈ Σ∗,

−
∑

xi∈V log2 h(xi) otherwise,

where xi indicates the ith symbol in x, and h is the upper bound of the proba-
bilities of expressions that can be derived from xi, and is calculated as the fixed
point of:

∀α ∈ V.h(α) = max
α→β∈R

P[α → β]×
∏
βi∈V

h(βi)

 ,

The function g(x) can then be thought of as the product of the probability of
each non-terminal symbol in x being converted into a terminal symbol.
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Smoothing the probability distributions: Since the A∗ algorithm will not enumer-
ate any programs whose derivation uses a rule with zero probability, we smooth

the weighted grammar as follows, with γ = 0.4: w′[α → β] = 10×
(

w[α→β]+1
10

)γ

.

6 Enumerative Synthesis with an Integrated LLM
(iLLM-synth)

The disadvantage of the method described in the preceding section is that the
language model cannot benefit from any additional information that the enu-
merator learns during enumeration, as all prompting happens prior to starting
the enumerative synthesis. In this section we describe how we integrate an LLM
into an enumerative synthesis algorithm, allowing it to update a probability
distribution over the search grammar and to augment the grammar with new
production rules, as shown in Algorithm 5.

Algorithm 5 Syntactic feedback generator

1: procedure SyntacticFeedback(WG, prog, cex)
2: prompt← GeneratePrompt(prog, cex)
3: response← LLM(prompt)
4: candidate← ExtractProgram(response)
5: WG.W ←WG.W +WeightCounter(response)
6: WG.R←WG.R ∪ (WG.S × response)
7: return WG

6.1 Integrated Prompting

We construct a prompt that asks the LLM to provide helper functions to as-
sist a student in writing SMT-lib code. We give the LLM the constraints from
the target synthesis problem and the partially complete program at the point
the enumerator calls the LLM. If the LLM fails to solve the problem with this
prompt, we later add the most recently failed candidate solution and the coun-
terexample it failed on. These prompts are shorter than the prompts in those
used in Section 4 and, therefore, cheaper and faster to run. An example Prompt 4
is as follows:

You are teaching a student to write SMT -LIB. The student must write a
function that satisfies the following constraints:

(constraint (>= (fn vr0 vr1 vr2) vr0))
(constraint (>= (fn vr0 vr1 vr2) vr1))
(constraint (>= (fn vr0 vr1 vr2) vr2))
(constraint (or (= vr0 (fn vr0 vr1 vr2)) (or (= vr1 (fn vr0 vr1 vr2)) (=

vr2 (fn vr0 vr1 vr2)))))
So far , the student has written this code:
(define -fun fn ((vr0 Int) (vr1 Int) (vr2 Int)) Int

(ite ?? ?? ??)
Can you suggest some helper functions for the student to use to complete

this code and replace the ??
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You must print only the code and nothing else.

Prompt 4. Integrated prompt for Example 1.

Algorithm 6 Top-down enumerator for iLLM-synth

1: procedure Enumerate(WG, ϕ, cex )
2: prog ←WG.S
3: d← 0; i← 0
4: PG ← BuildPCFG(WG)
5: while 1 do
6: if prog ∈ Σ∗ then
7: if ∀x⃗ ∈ cex. ϕ(prog, x⃗) then
8: return prog
9: else
10: prog ← S
11: d← 0
12: if i%n = 0 then
13: WG ← SyntacticFeedback(WG, prog, cex)
14: PG ← BuildPCFG(WG)

15: prog ← ReplaceNonTerminals(prog, PG)
16: d← d+ 1
17: if d = maxDepth then
18: prog ← CompleteProgram(prog, PG)
19: if prog ∈ PreviousPrograms then
20: prog ← S
21: d← 0
22: i← i+ 1

6.2 Updating the Weighted Grammar

We initialize our algorithm with a weight of 1 for each rule in the grammar.
We use the LLM-generated helper functions to augment the grammar in the
following way: first, any helper functions will be added directly as new production
rules to replace non-terminals of the correct type in the grammar. That is, if the
LLM proposes the defined function f , a set of rules of the form Vi× f are added
to the grammar, for all non-terminal symbols Vi such that this rule results in
syntactically correct expressions, i.e., Vi must be of the same type as the co-
domain of f . This is sufficient to guarantee syntactically correct expressions
because any functions proposed by the LLM that are otherwise not well-formed,
e.g., they reference variables that are not defined, are discarded. Any new rules
are given a weight equal to the average of all the current weights for rules relevant
to that non-terminal. The response parser also updates the weights of all existing
rules in the grammar, according to Equation 1, calculated from the set of helper
functions the LLM proposed.
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6.3 Integrating Syntactic Feedback into Enumerative Search

We integrate the syntactic feedback generator into the probabilistic enumerator,
shown in Algorithm 3, and into the A∗ weighted search, as shown in Algorithm 7.
Both search algorithms call the syntactic feedback generator every nth iteration,
where n is a heuristic used to ensure the LLM is not called with the same
partial program repeatedly and that the search algorithm has time to exploit the
information obtained from the LLM. Note that, when the probabilistic grammar
is updated, the h values must be re-calculated in the A∗ search.

Algorithm 7 A∗ search for iLLM-synth

1: procedure Enumerate(PG, ϕ, cex )
2: Q = {0, S} ▷ Priority queue of candidates
3: i← 0
4: while Q ̸= ∅ do
5: (f, prog)← Q.pop() ▷ Remove program with minimal f
6: if prog ∈ Σ∗ then
7: if ∀x⃗ ∈ cex. ϕ(prog, x⃗) then
8: return prog

9: if i%n = 0 then
10: WG ← SyntacticFeedback(WG, prog, cex)
11: PG ← BuildPCFG(WG)

12: for (nt ∈ prog)× nt′ do
13: if (nt× nt′) ∈ PG.R then ▷ For all applicable rules
14: prog ← prog.{nt→ nt′} ▷ apply rule to prog
15: Q← Q ∪ (c(prog) + g(prog), prog)

16: i← i+ 1

7 Evaluation

We evaluate our approaches on benchmarks taken from the SyGuS competi-
tion [3], each with a grammar that corresponds to the full language of their re-
spective theories. We evaluate across three SyGuS categories: Bit-Vector (BV),
Linear Integer Arithmetic (LIA), and Invariants (INV). We evaluate both the
LLM as a stand-alone synthesizer, the probabilistic enumerator and A∗ imple-
mentations with a pre-trained pCFG and the enumerator with a pre-trained
syntactic oracle. We utilize OpenAI’s GPT-3.5-turbo-16k model to generate the
prompts used for the pre-trained pCFG and the standalone LLM evaluation
because this model supports longer prompts. We configure this with a tempera-
ture of 1.0, conversation-style messaging. We use GPT-3.5-turbo for iLLM-synth,
which has shorter prompts. We use the 4.8.12 64-bit version of Z3 for verification
and cvc5 version 1.1.0 as a baseline.
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Evaluation of the stand-alone LLM: We prompt the LLM until it produces up
to 6 complete synthesis attempts per benchmark, with the results reported in
line 1 of Table 1. Any incomplete solutions are discarded (i.e., functions without
a function body), although these are relatively rare, and we discard only 0.85%
of programs we generate. In total, the LLM solves 49% of benchmarks, perform-
ing better in the invariant and LIA categories than the bit-vector category. On
average, for the benchmarks it can solve, it takes 4 attempts to produce a correct
solution. The average time for the LLM to generate a program is approximately
5s using the OpenAI Python API. However, this is dependent on OpenAI, and
we report these times only as estimates in Table 1. We allow the LLM only 6
attempts to solve the problem since, by the 6th iteration, the number of new
solutions the LLM finds has dropped to < 2% (and it finds 0 new solutions for
LIA).

Evaluation of pCFG-synth: We evaluate both variants of pCFG-synth (with
the probabilistic enumerator, denoted e-pCFG-synth, and with A∗, denoted A∗-
pCFG-synth) using the wCFG obtained from the LLM. As a baseline, we run the
same algorithms assigning a weight of 1 to every rule in the grammar (referred to
as “enumerator” and A∗ respectively in the results). pCFG-synth increases the
number of benchmarks the probabilistic enumerator can solve by 30%, but barely
increases the number A∗ can solve, although the exact sets of benchmarks which
A∗ and A∗-pCFG-synth solve do differ significantly. We hypothesize that this is
because A∗, guided by the pCFG with equal weights for all rules, is very good at
generating short solutions, and A∗-pCFG-synth is worse at short solutions but
better at generating more complex solutions guided by the pCFG.

We also report the results obtained by the union of the LLM alone and pCFG-
synth, i.e., if the LLM solves the benchmark, we do not deploy the enumerator.
This is a more realistic representation of how such a technique would be used and
demonstrates that the enumerator can overcome shortcomings of the LLM and
vice versa. The union of the LLM and A∗-pCFG-synth substantially outperforms
cvc5, solving 73 more benchmarks.

Evaluating iLLM-synth: We evaluate both variants of iLLM-synth, denoted e-
iLLM-synth and A∗-iLLM-synth. We set the temperature for e-iLLM-synth to
1, but find that A∗-iLLM-synth performs better with a temperature set to 0
which we hypothesize is due to the determinism of the algorithm. We find that
iLLM-synth outperforms the enumerator of pCFG-synth, and gets close to the
performance of cvc5, suggesting that the ability to prompt the LLM with ad-
ditional information obtained during enumeration allows the LLM to provide
better guidance to the enumerator, as well as to more frequently propose useful
helper functions. We do find that iLLM-synth performs less well than methods
incorporating the stand-alone LLM on the invariant benchmarks, which is likely
because the invariant benchmarks benefit from the custom prompting technique
described in Section 4.1. Future work would involve identifying further cate-
gories of benchmarks that benefit from custom prompts. It is worth noting that
neither the probabilistic enumerator nor the A∗ implementation includes many
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of the optimizations that mature solvers such as cvc5 implement, and yet, by
integrating these simple algorithms with syntactic feedback from an LLM, they
have achieved performance on par with the state-of-the-art enumerative solver.

Failure Modes: We manually examine a sample of the stand-alone LLM errors
and give examples of such errors in the extended version of this paper 4. Broadly,
we identify the following common failures: Misunderstandings due to complex
constraints (the LLM suggests solutions that are not syntactically close to the
correct solution); simple syntactic errors, e.g., applying non-commutative opera-
tors to operands in the wrong order, concatenating bit-vectors in the wrong order
or hallucinating operations; simple semantic errors, e.g., operators in the wrong
order. Errors in the first category are not helpful to our guided enumerators, but
the remaining categories of error still allow us to generate a wCFG that is likely
to indicate the area of the solution. The benchmarks that cvc5 can solve and our
enumerative techniques cannot, tend to have complex constraints and relatively
short solutions that use less common operators (e.g., bitwise operators). We hy-
pothesize that the LLM guidance becomes an impediment to the enumerator
in these scenarios. In contrast, the average length (in characters) of a solution
for benchmarks uniquely solved by the LLM is 4.7x the length of a solution for
benchmarks uniquely solved by cvc5. Using the LLM to guide the enumerators
increases the length of solutions that the enumerators can find, for instance all
solutions found by A∗ contain fewer than 3 operators, but A∗-iLLM-synth finds
solutions with greater than 20 operators.

Programming-by-example: We omit benchmarks from the syntax-guided synthe-
sis competition tracks that solely focus on programming-by-example (PBE)(i.e.,
specifying a program only using input-output examples and a grammar). We
omit these benchmarks for two reasons: first, since training data is trivial to
generate for PBE, unlike general logical specifications [34], there are many other
successful machine-learning driven synthesis techniques that can be trained for
PBE techniques[6]. Second; our approaches are effective when the LLM can pro-
vide guidance to the enumerator, which comes from prompting the LLM with the
logical constraints that form the specification. If we prompt the LLM using the
prompting techniques outlined in Section 4.1 with a PBE specification, it tends
to provide a solution in the form of a large case split over the input examples,
which returns specific outputs for each input. This is not useful for guiding the
enumerator because the LLM overfits to the examples in the specification and
fails to provide any bias towards operators other than “if-then-else”. To extend
our approach to PBE, we would need to use a prompting approach tailored to
input-output examples.

4 https://arxiv.org/html/2403.03997
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BV (384) LIA (87) INV (138) Total (609)

Methods # time(s) # time(s) # time(s) # %

LLM only 137 13.5 54 7.10 112 29.2 303 49.8%
e-pCFG-synth ⋄ 196.0 48.3 24.0 40.0 25.4 100.5 245.4 40.3%
A∗-pCFG-synth 262 60.1 35 72.7 25 99.7 322 52.9%
LLM ∪ e-pCFG-synth 255.0 37.0 64.0 17.20 117.7 40.4 436.7 71.7%
LLM ∪ A∗-pCFG-synth 305.0 35.0 65.0 18.1 118.0 33.6 488.0 80.1%
e-iLLM-synth ⋄ 241.0 88.2 63.4 9.3 65.3 25.4 370.0 60.8%
A∗-iLLM-synth ⋄ 272.3 24.6 68.3 20.8 67.3 43.6 408.0 67.0%

enumerator⋄ 142.7 7.2 25.0 1.53 21.0 3.2 188.7 31.0%
A∗ 253.0 25.4 34.0 73.19 22.0 31.1 309.0 50.7%
cvc5 292.0 17.1 43.0 19.53 80.0 23.6 415.0 68.1%

Table 1. Summary of results. We run nondeterministic results, marked ⋄, 3 times
and report the average (standard deviation is less than 1% for all methods except the
baseline enumerator for number of benchmarks solved). We highlight the best result in
terms of number of benchmarks solved in each category. The timeout is 600s. Times
in italic indicate results that may vary depending on load on the OpenAI servers. The
times for pCFG-synth do not include the time to call the standalone LLM and generate
the wCFGs, but these are included in the times for LLM ∪ pCFG-synth.

8 Threats to Validity

LLM Training Data: The SyGuS problems are publicly available and might
be part of the training data for the LLM we use, although we believe the
solutions were not publicly available at the time of training.

Reproducibility: These experiments use GPT-3.5, an LLM available via API
from OpenAI. We have recorded the responses and parameters generated
by the LLM in all experiments, but these may not be reproducible [33]
since GPT-3.5 behaves non-deterministically in a way that cannot be seeded.
However, we observe very small variations in the number of benchmarks
solved in our experiments (although greater variation in the average solving
time). It is also possible that OpenAI deprecates this LLM and its associated
API or updates it and changes its behavior in the future.

Benchmark Bias: The benchmark set is taken from the SyGuS competition [3],
but may not be very diverse and may not be representative of synthesis prob-
lems “in the wild”. Nevertheless, this is a standard benchmark set used in
many formal synthesis papers.

Hyperparameters: We have not invested time in parameter tuning, and better
or worse results may be obtained by changing the LLM parameters (temper-
ature), or adjusting the weights, enumeration depth and heuristic functions
in the probabilistic enumerator and A∗ algorithms.

9 Related Work

Many state-of-the-art of SyGuS solvers are based on enumerative synthesis [4, 37,
27, 21] and use clever heuristics to improve the search speed. Closest to our work
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is Euphony [27], which uses a pre-trained probabilistic higher-order grammar [9]
to guide an A∗ search. This requires a library of known solutions for training;
an advantage of our approach is it exploits the availability of LLMs pre-trained
on large bodies of code in other languages, and disregards the need for a library
of known solutions of SyGuS problems for training. Weighted grammars have
also been used to guide programming by example [30], and to encode syntactic
objectives [20], for instance, for optimizing the length of solutions.

Almost all synthesis algorithms use oracles to give feedback to the synthesis
process [25, 24]. The majority of these use semantic oracles, which give feedback
on the meaning of the program, for example, counterexamples [2]. The LLM in
iLLM-synth can be considered a syntactic oracle as it only gives feedback on
the syntax of the program. Two approaches [17, 1] can be thought of as using
syntactic oracles, which evaluate partial programs (or sentential forms) and tell
the synthesizer whether a solution can be derived from the sentential form.

Machine learning techniques have been deployed to improve the efficiency
of enumerative synthesis, e.g., reinforcement learning [34, 15, 12] or using neural
networks to filter grammars for programming-by-examples problems [31].

LLMs, such as GPT-4 [32] and CoPilot [18], have demonstrated impressive
capabilities in generating code and assisting in diverse programming tasks with
natural language and input-output specifications [10, 11, 5, 22]. However, their
tendency to produce hallucinations, factually incorrect or contextually inappro-
priate outputs, which poses challenges to users [36, 38, 35]. Closest to our work
is Kamath et al., who use LLMs to synthesize loop invariants [26] directly. Our
work also demonstrates that LLMs are surprisingly good at synthesizing in-
variants, but also addresses the question of how to use LLMs in other formal
synthesis problems and when they cannot find the solution in one shot. Other
work that integrates formal methods with LLMs uses LLMs to generate program
annotations for program annotation [43, 41]. Jha et al. [23] and Song et al. [40]
integrate an LLM into a CEGIS loop, but, unlike our work, the entire synthesis
phase is implemented by an LLM, which does not allow them to benefit from
the combined strengths of enumerative solving and LLMs.

10 Conclusions

We have presented a novel integration of LLMs into two enumerative synthesis
algorithms, evaluated on benchmarks from the Syntax-Guided Synthesis com-
petition. We found that LLMs and enumerative solvers have distinct strengths
and weaknesses when deployed alone. We have demonstrated that, by allow-
ing the enumerative synthesizer to prompt the LLM with information obtained
during the enumeration and allowing the LLM to provide syntactic feedback
to the enumeration, we can achieve performance that equals and exceeds the
state-of-the-art solvers, even with relatively simple enumerative algorithms. We
argue that our results show that LLMs have the potential to make significant
contributions in the domain of formal program synthesis, but the way to achieve
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this is by combining these techniques with existing algorithms in the literature.
Enumerative synthesis is not dead yet!
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