Search for blocks/addresses/...
Proofgold Address
address
PUKA4Cszo7qto6fb8YW4DSgiQiyeL2RVTPb
total
0
mg
-
conjpub
-
current assets
7fb60..
/
3f1f8..
bday:
1627
doc published by
PrGxv..
Known
535f2..
set_ext_2
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
(
∀ x2 .
In
x2
x1
⟶
In
x2
x0
)
⟶
x0
=
x1
Known
970d5..
apI
:
∀ x0 x1 x2 .
In
(
setsum
x1
x2
)
x0
⟶
In
x2
(
ap
x0
x1
)
Known
88f5c..
proj0E
:
∀ x0 x1 .
In
x1
(
proj0
x0
)
⟶
In
(
setsum
0
x1
)
x0
Known
afc0a..
proj0I
:
∀ x0 x1 .
In
(
setsum
0
x1
)
x0
⟶
In
x1
(
proj0
x0
)
Known
0bd41..
apE
:
∀ x0 x1 x2 .
In
x2
(
ap
x0
x1
)
⟶
In
(
setsum
x1
x2
)
x0
Theorem
82f37..
proj0_ap_0
:
∀ x0 .
proj0
x0
=
ap
x0
0
(proof)
Known
13e9e..
proj1E
:
∀ x0 x1 .
In
x1
(
proj1
x0
)
⟶
In
(
setsum
1
x1
)
x0
Known
16411..
proj1I
:
∀ x0 x1 .
In
(
setsum
1
x1
)
x0
⟶
In
x1
(
proj1
x0
)
Theorem
3342b..
proj1_ap_1
:
∀ x0 .
proj1
x0
=
ap
x0
1
(proof)
Known
d6e1a..
proj0_pair_eq
:
∀ x0 x1 .
proj0
(
setsum
x0
x1
)
=
x0
Theorem
ca18d..
pair_ap_0
:
∀ x0 x1 .
ap
(
setsum
x0
x1
)
0
=
x0
(proof)
Known
b8fac..
proj1_pair_eq
:
∀ x0 x1 .
proj1
(
setsum
x0
x1
)
=
x1
Theorem
dcb97..
pair_ap_1
:
∀ x0 x1 .
ap
(
setsum
x0
x1
)
1
=
x1
(proof)
Known
d0de4..
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Known
9d2e6..
nIn_I2
:
∀ x0 x1 .
(
In
x0
x1
⟶
False
)
⟶
nIn
x0
x1
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
2ce7d..
pairE
:
∀ x0 x1 x2 .
In
x2
(
setsum
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x0
)
(
x2
=
setsum
0
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x1
)
(
x2
=
setsum
1
x4
)
⟶
x3
)
⟶
x3
)
Known
61640..
exandE_i
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
Known
24526..
nIn_E2
:
∀ x0 x1 .
nIn
x0
x1
⟶
In
x0
x1
⟶
False
Known
39854..
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Known
a1bad..
pair_inj
:
∀ x0 x1 x2 x3 .
setsum
x0
x1
=
setsum
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
0863e..
In_0_2
:
In
0
2
Known
0a117..
In_1_2
:
In
1
2
Theorem
e90b3..
pair_ap_n2
:
∀ x0 x1 x2 .
nIn
x2
2
⟶
ap
(
setsum
x0
x1
)
x2
=
0
(proof)
Known
8da7f..
pair_eta_Subq_proj
:
∀ x0 .
Subq
(
setsum
(
proj0
x0
)
(
proj1
x0
)
)
x0
Theorem
2aea4..
pair_eta_Subq
:
∀ x0 .
Subq
(
setsum
(
ap
x0
0
)
(
ap
x0
1
)
)
x0
(proof)
Known
3057f..
proj0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
In
(
proj0
x2
)
x0
Theorem
1194c..
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
In
(
ap
x2
0
)
x0
(proof)
Known
6bfcf..
proj1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
In
(
proj1
x2
)
(
x1
(
proj0
x2
)
)
Theorem
a6609..
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
In
(
ap
x2
1
)
(
x1
(
ap
x2
0
)
)
(proof)
Known
413ee..
proj_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
setsum
(
proj0
x2
)
(
proj1
x2
)
=
x2
Theorem
43d10..
Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
setsum
(
ap
x2
0
)
(
ap
x2
1
)
=
x2
(proof)
Known
09697..
ReplEq_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
Repl
x0
x1
=
Repl
x0
x2
Known
ad99c..
setprod_def
:
setprod
=
λ x1 x2 .
lam
x1
(
λ x3 .
x2
)
Theorem
5fe5d..
ReplEq_setprod_ext
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
In
x4
x0
⟶
∀ x5 .
In
x5
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
Repl
(
setprod
x0
x1
)
(
λ x5 .
x2
(
ap
x5
0
)
(
ap
x5
1
)
)
=
Repl
(
setprod
x0
x1
)
(
λ x5 .
x3
(
ap
x5
0
)
(
ap
x5
1
)
)
(proof)
Known
fb6e4..
setsum_p_def
:
setsum_p
=
λ x1 .
setsum
(
ap
x1
0
)
(
ap
x1
1
)
=
x1
Theorem
d0663..
setsum_p_E
:
∀ x0 .
setsum_p
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
x1
(
setsum
x2
x3
)
)
⟶
x1
x0
(proof)
Theorem
b2553..
setsum_p_I
:
∀ x0 x1 .
setsum_p
(
setsum
x0
x1
)
(proof)
Known
2a3f2..
pairE_impred
:
∀ x0 x1 x2 .
In
x2
(
setsum
x0
x1
)
⟶
∀ x3 :
ι → ο
.
(
∀ x4 .
In
x4
x0
⟶
x3
(
setsum
0
x4
)
)
⟶
(
∀ x4 .
In
x4
x1
⟶
x3
(
setsum
1
x4
)
)
⟶
x3
x2
Known
65d0d..
ReplSepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
In
x3
(
ReplSep
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
In
x5
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
7aad1..
UPairE_cases
:
∀ x0 x1 x2 .
In
x0
(
UPair
x1
x2
)
⟶
∀ x3 : ο .
(
x0
=
x1
⟶
x3
)
⟶
(
x0
=
x2
⟶
x3
)
⟶
x3
Known
65c61..
pairI0
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
(
setsum
0
x2
)
(
setsum
x0
x1
)
Known
9fdc4..
ReplSepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
In
x3
x0
⟶
x1
x3
⟶
In
(
x2
x3
)
(
ReplSep
x0
x1
x2
)
Known
77980..
pairI1
:
∀ x0 x1 x2 .
In
x2
x1
⟶
In
(
setsum
1
x2
)
(
setsum
x0
x1
)
Known
367e6..
SubqE
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 .
In
x2
x0
⟶
In
x2
x1
Known
8fa42..
Subq_2_UPair01
:
Subq
2
(
UPair
0
1
)
Theorem
b4313..
setsum_p_I2
:
∀ x0 .
(
∀ x1 .
In
x1
x0
⟶
and
(
setsum_p
x1
)
(
In
(
ap
x1
0
)
2
)
)
⟶
setsum_p
x0
(proof)
Theorem
f8570..
setsum_p_In_ap
:
∀ x0 x1 .
setsum_p
x0
⟶
In
x0
x1
⟶
In
(
ap
x0
1
)
(
ap
x1
(
ap
x0
0
)
)
(proof)
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
pred_ext_2
pred_ext_i
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
(proof)
Known
def11..
tuple_p_def
:
tuple_p
=
λ x1 x2 .
∀ x3 .
In
x3
x2
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
In
x5
x1
)
(
∀ x6 : ο .
(
∀ x7 .
x3
=
setsum
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
47657..
setsum_p_tuple2
:
setsum_p
=
tuple_p
2
(proof)
Known
e3e5f..
lamE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
In
x6
(
x1
x4
)
)
(
x2
=
setsum
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Theorem
1cbf4..
tuple_p_2_tuple
:
∀ x0 x1 .
tuple_p
2
(
lam
2
(
λ x2 .
If_i
(
x2
=
0
)
x0
x1
)
)
(proof)
Theorem
bd5ac..
tuple_p_3_tuple
:
∀ x0 x1 x2 .
tuple_p
3
(
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
x1
x2
)
)
)
(proof)
Theorem
6947c..
tuple_p_4_tuple
:
∀ x0 x1 x2 x3 .
tuple_p
4
(
lam
4
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
(
If_i
(
x4
=
2
)
x2
x3
)
)
)
)
(proof)
Known
f9ff3..
lamI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
(
x1
x2
)
⟶
In
(
setsum
x2
x3
)
(
lam
x0
x1
)
Known
0d2f9..
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
81513..
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
a871f..
neq_1_0
:
not
(
1
=
0
)
Theorem
7fead..
tuple_pair
:
∀ x0 x1 .
setsum
x0
x1
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
(proof)
Known
ca1b6..
Pi_def
:
Pi
=
λ x1 .
λ x2 :
ι → ι
.
Sep
(
Power
(
lam
x1
(
λ x3 .
Union
(
x2
x3
)
)
)
)
(
λ x3 .
∀ x4 .
In
x4
x1
⟶
In
(
ap
x3
x4
)
(
x2
x4
)
)
Known
dab1f..
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
x0
⟶
x1
x2
⟶
In
x2
(
Sep
x0
x1
)
Known
2d44a..
PowerI
:
∀ x0 x1 .
Subq
x1
x0
⟶
In
x1
(
Power
x0
)
Known
b0dce..
SubqI
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
Subq
x0
x1
Known
a4d26..
UnionI
:
∀ x0 x1 x2 .
In
x1
x2
⟶
In
x2
x0
⟶
In
x1
(
Union
x0
)
Theorem
b9bec..
PiI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
In
x3
x2
⟶
and
(
setsum_p
x3
)
(
In
(
ap
x3
0
)
x0
)
)
⟶
(
∀ x3 .
In
x3
x0
⟶
In
(
ap
x2
x3
)
(
x1
x3
)
)
⟶
In
x2
(
Pi
x0
x1
)
(proof)
Known
aa3f4..
SepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
(
Sep
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x1
x2
⟶
x3
)
⟶
x3
Known
ae89b..
PowerE
:
∀ x0 x1 .
In
x1
(
Power
x0
)
⟶
Subq
x1
x0
Theorem
208df..
PiE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Pi
x0
x1
)
⟶
∀ x3 : ο .
(
(
∀ x4 .
In
x4
x2
⟶
and
(
setsum_p
x4
)
(
In
(
ap
x4
0
)
x0
)
)
⟶
(
∀ x4 .
In
x4
x0
⟶
In
(
ap
x2
x4
)
(
x1
x4
)
)
⟶
x3
)
⟶
x3
(proof)
Theorem
8dccb..
PiE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Pi
x0
x1
)
⟶
and
(
∀ x3 .
In
x3
x2
⟶
and
(
setsum_p
x3
)
(
In
(
ap
x3
0
)
x0
)
)
(
∀ x3 .
In
x3
x0
⟶
In
(
ap
x2
x3
)
(
x1
x3
)
)
(proof)
Known
32c82..
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
cab70..
PiEq
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
iff
(
In
x2
(
Pi
x0
x1
)
)
(
and
(
∀ x3 .
In
x3
x2
⟶
and
(
setsum_p
x3
)
(
In
(
ap
x3
0
)
x0
)
)
(
∀ x3 .
In
x3
x0
⟶
In
(
ap
x2
x3
)
(
x1
x3
)
)
)
(proof)
Known
b515a..
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Theorem
25543..
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
In
(
x2
x3
)
(
x1
x3
)
)
⟶
In
(
lam
x0
x2
)
(
Pi
x0
x1
)
(proof)
Known
076ba..
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
In
x2
(
Sep
x0
x1
)
⟶
x1
x2
Theorem
31c25..
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
In
x2
(
Pi
x0
x1
)
⟶
In
x3
x0
⟶
In
(
ap
x2
x3
)
(
x1
x3
)
(proof)
Theorem
44e63..
Pi_ext_Subq
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Pi
x0
x1
)
⟶
∀ x3 .
In
x3
(
Pi
x0
x1
)
⟶
(
∀ x4 .
In
x4
x0
⟶
Subq
(
ap
x2
x4
)
(
ap
x3
x4
)
)
⟶
Subq
x2
x3
(proof)
Known
b3824..
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Known
6696a..
Subq_ref
:
∀ x0 .
Subq
x0
x0
Theorem
552ff..
Pi_ext
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Pi
x0
x1
)
⟶
∀ x3 .
In
x3
(
Pi
x0
x1
)
⟶
(
∀ x4 .
In
x4
x0
⟶
ap
x2
x4
=
ap
x3
x4
)
⟶
x2
=
x3
(proof)
Theorem
eb933..
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Pi
x0
x1
)
⟶
lam
x0
(
ap
x2
)
=
x2
(proof)
Known
0978b..
In_0_1
:
In
0
1
Known
2901c..
EmptyE
:
∀ x0 .
In
x0
0
⟶
False
Known
9ae18..
SingE
:
∀ x0 x1 .
In
x1
(
Sing
x0
)
⟶
x1
=
x0
Known
830d8..
Subq_1_Sing0
:
Subq
1
(
Sing
0
)
Theorem
99b3b..
Pi_Power_1
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
In
x2
x0
⟶
In
(
x1
x2
)
(
Power
1
)
)
⟶
In
(
Pi
x0
x1
)
(
Power
1
)
(proof)
Known
3ab01..
xmcases_In
:
∀ x0 x1 .
∀ x2 : ο .
(
In
x0
x1
⟶
x2
)
⟶
(
nIn
x0
x1
⟶
x2
)
⟶
x2
Known
4862c..
beta0
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
nIn
x2
x0
⟶
ap
(
lam
x0
x1
)
x2
=
0
Theorem
53cbb..
Pi_0_dom_mon
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
Subq
x0
x1
⟶
(
∀ x3 .
In
x3
x1
⟶
nIn
x3
x0
⟶
In
0
(
x2
x3
)
)
⟶
Subq
(
Pi
x0
x2
)
(
Pi
x1
x2
)
(proof)
Theorem
82f9f..
Pi_cod_mon
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
Subq
(
x1
x3
)
(
x2
x3
)
)
⟶
Subq
(
Pi
x0
x1
)
(
Pi
x0
x2
)
(proof)
Known
2ad64..
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
Theorem
755f8..
Pi_0_mon
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
In
x4
x0
⟶
Subq
(
x2
x4
)
(
x3
x4
)
)
⟶
Subq
x0
x1
⟶
(
∀ x4 .
In
x4
x1
⟶
nIn
x4
x0
⟶
In
0
(
x3
x4
)
)
⟶
Subq
(
Pi
x0
x2
)
(
Pi
x1
x3
)
(proof)
Known
3c3a9..
setexp_def
:
setexp
=
λ x1 x2 .
Pi
x2
(
λ x3 .
x1
)
Known
cd094..
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Known
56f17..
Sigma_eta_proj0_proj1
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
and
(
and
(
setsum
(
proj0
x2
)
(
proj1
x2
)
=
x2
)
(
In
(
proj0
x2
)
x0
)
)
(
In
(
proj1
x2
)
(
x1
(
proj0
x2
)
)
)
Known
e01bb..
If_i_or
:
∀ x0 : ο .
∀ x1 x2 .
or
(
If_i
x0
x1
x2
=
x1
)
(
If_i
x0
x1
x2
=
x2
)
Theorem
4c66a..
setexp_2_eq
:
∀ x0 .
setprod
x0
x0
=
setexp
x0
2
(proof)
Theorem
49ee1..
setexp_0_dom_mon
:
∀ x0 .
In
0
x0
⟶
∀ x1 x2 .
Subq
x1
x2
⟶
Subq
(
setexp
x0
x1
)
(
setexp
x0
x2
)
(proof)
Theorem
ad21b..
setexp_0_mon
:
∀ x0 x1 x2 x3 .
In
0
x3
⟶
Subq
x2
x3
⟶
Subq
x0
x1
⟶
Subq
(
setexp
x2
x0
)
(
setexp
x3
x1
)
(proof)
Known
80da5..
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
In
x1
x0
⟶
Subq
x1
x0
Theorem
5ac7b..
nat_in_setexp_mon
:
∀ x0 .
In
0
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
In
x2
x1
⟶
Subq
(
setexp
x0
x2
)
(
setexp
x0
x1
)
(proof)
Theorem
08193..
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
(proof)
Theorem
66870..
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
(proof)
Known
82574..
In_0_3
:
In
0
3
Theorem
bfdfa..
tuple_3_0_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
0
=
x0
(proof)
Known
f0f3e..
In_1_3
:
In
1
3
Theorem
96b06..
tuple_3_1_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
1
=
x1
(proof)
Known
b5e95..
In_2_3
:
In
2
3
Known
db5d7..
neq_2_0
:
not
(
2
=
0
)
Known
56778..
neq_2_1
:
not
(
2
=
1
)
Theorem
1edca..
tuple_3_2_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
2
=
x2
(proof)
Theorem
6e7a2..
pair_tuple_fun
:
setsum
=
λ x1 x2 .
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x1
x2
)
(proof)
Theorem
51f9a..
tupleI0
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
0
x2
)
)
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
(proof)
Theorem
6975b..
tupleI1
:
∀ x0 x1 x2 .
In
x2
x1
⟶
In
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
1
x2
)
)
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
(proof)
Theorem
bc7d4..
tupleE
:
∀ x0 x1 x2 .
In
x2
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x0
)
(
x2
=
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
0
x4
)
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x1
)
(
x2
=
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
1
x4
)
)
⟶
x3
)
⟶
x3
)
(proof)
Theorem
7b362..
tuple_2_inj
:
∀ x0 x1 x2 x3 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x0
x1
)
=
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x2
x3
)
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Theorem
abe40..
tuple_2_inj_impred
:
∀ x0 x1 x2 x3 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x0
x1
)
=
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x2
x3
)
⟶
∀ x4 : ο .
(
x0
=
x2
⟶
x1
=
x3
⟶
x4
)
⟶
x4
(proof)
Theorem
77775..
lamI2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
(
x1
x2
)
⟶
In
(
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
)
(
lam
x0
x1
)
(proof)
Theorem
e8081..
tuple_2_setprod
:
∀ x0 x1 x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
x1
⟶
In
(
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
)
(
setprod
x0
x1
)
(proof)
Theorem
f1e40..
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
(proof)
Theorem
77775..
lamI2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
(
x1
x2
)
⟶
In
(
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
)
(
lam
x0
x1
)
(proof)
Theorem
8eec4..
lamE2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
In
x6
(
x1
x4
)
)
(
x2
=
lam
2
(
λ x8 .
If_i
(
x8
=
0
)
x4
x6
)
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Theorem
9799b..
lamE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
∀ x3 :
ι → ο
.
(
∀ x4 .
In
x4
x0
⟶
∀ x5 .
In
x5
(
x1
x4
)
⟶
x3
(
setsum
x4
x5
)
)
⟶
x3
x2
(proof)
Theorem
2c78e..
lamE2_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
lam
x0
x1
)
⟶
∀ x3 :
ι → ο
.
(
∀ x4 .
In
x4
x0
⟶
∀ x5 .
In
x5
(
x1
x4
)
⟶
x3
(
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
x4
x5
)
)
)
⟶
x3
x2
(proof)
Theorem
cc0cc..
apI2
:
∀ x0 x1 x2 .
In
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x1
x2
)
)
x0
⟶
In
x2
(
ap
x0
x1
)
(proof)
Theorem
35c18..
apE2
:
∀ x0 x1 x2 .
In
x2
(
ap
x0
x1
)
⟶
In
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x1
x2
)
)
x0
(proof)
Known
d6778..
Empty_Subq_eq
:
∀ x0 .
Subq
x0
0
⟶
x0
=
0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
3b6b2..
ap_const_0
:
∀ x0 .
ap
0
x0
=
0
(proof)
Theorem
1a8aa..
lam_ext_sub
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
Subq
(
lam
x0
x1
)
(
lam
x0
x2
)
(proof)
Theorem
08153..
lam_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
(proof)
Theorem
38435..
lam_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
lam
x0
(
ap
(
lam
x0
x1
)
)
=
lam
x0
x1
(proof)
Theorem
d583c..
tuple_2_eta
:
∀ x0 x1 .
lam
2
(
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
)
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
(proof)
Theorem
b4c59..
tuple_3_eta
:
∀ x0 x1 x2 .
lam
3
(
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
)
=
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
(proof)
Theorem
2d998..
tuple_4_eta
:
∀ x0 x1 x2 x3 .
lam
4
(
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
)
=
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
(proof)
Known
8bb76..
Sep2_def
:
Sep2
=
λ x1 .
λ x2 :
ι → ι
.
λ x3 :
ι →
ι → ο
.
Sep
(
lam
x1
x2
)
(
λ x4 .
x3
(
ap
x4
0
)
(
ap
x4
1
)
)
Theorem
3212f..
Sep2I
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
In
x3
x0
⟶
∀ x4 .
In
x4
(
x1
x3
)
⟶
x2
x3
x4
⟶
In
(
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
)
(
Sep2
x0
x1
x2
)
(proof)
Theorem
67445..
Sep2E_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
In
x3
(
Sep2
x0
x1
x2
)
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
In
x5
x0
⟶
∀ x6 .
In
x6
(
x1
x5
)
⟶
x2
x5
x6
⟶
x4
(
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
x5
x6
)
)
)
⟶
x4
x3
(proof)
Theorem
c083f..
Sep2E
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
In
x3
(
Sep2
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
In
x5
x0
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
In
x7
(
x1
x5
)
)
(
and
(
x3
=
lam
2
(
λ x9 .
If_i
(
x9
=
0
)
x5
x7
)
)
(
x2
x5
x7
)
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
(proof)
Theorem
f69a3..
Sep2E_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
In
(
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
)
(
Sep2
x0
x1
x2
)
⟶
∀ x5 : ο .
(
In
x3
x0
⟶
In
x4
(
x1
x3
)
⟶
x2
x3
x4
⟶
x5
)
⟶
x5
(proof)
Theorem
63884..
Sep2E1
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
In
(
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
)
(
Sep2
x0
x1
x2
)
⟶
In
x3
x0
(proof)
Theorem
f1aba..
Sep2E2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
In
(
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
)
(
Sep2
x0
x1
x2
)
⟶
In
x4
(
x1
x3
)
(proof)
Theorem
1861a..
Sep2E3
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
In
(
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
)
(
Sep2
x0
x1
x2
)
⟶
x2
x3
x4
(proof)
Known
4e628..
set_of_pairs_def
:
set_of_pairs
=
λ x1 .
∀ x2 .
In
x2
x1
⟶
∀ x3 : ο .
(
∀ x4 .
(
∀ x5 : ο .
(
∀ x6 .
x2
=
lam
2
(
λ x8 .
If_i
(
x8
=
0
)
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
d182e..
iffE
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
(
not
x0
⟶
not
x1
⟶
x2
)
⟶
x2
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
51150..
set_of_pairs_ext
:
∀ x0 x1 .
set_of_pairs
x0
⟶
set_of_pairs
x1
⟶
(
∀ x2 x3 .
iff
(
In
(
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
)
x0
)
(
In
(
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
)
x1
)
)
⟶
x0
=
x1
(proof)
Theorem
9a832..
Sep2_set_of_pairs
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
set_of_pairs
(
Sep2
x0
x1
x2
)
(proof)
Theorem
1b318..
Sep2_ext
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
In
x4
x0
⟶
∀ x5 .
In
x5
(
x1
x4
)
⟶
iff
(
x2
x4
x5
)
(
x3
x4
x5
)
)
⟶
Sep2
x0
x1
x2
=
Sep2
x0
x1
x3
(proof)
Known
244ad..
lam2_def
:
lam2
=
λ x1 .
λ x2 :
ι → ι
.
λ x3 :
ι →
ι → ι
.
lam
x1
(
λ x4 .
lam
(
x2
x4
)
(
x3
x4
)
)
Theorem
0c386..
beta2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 .
In
x3
x0
⟶
∀ x4 .
In
x4
(
x1
x3
)
⟶
ap
(
ap
(
lam2
x0
x1
x2
)
x3
)
x4
=
x2
x3
x4
(proof)
Theorem
0c69a..
lam2_ext
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
In
x4
x0
⟶
∀ x5 .
In
x5
(
x1
x4
)
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
lam2
x0
x1
x2
=
lam2
x0
x1
x3
(proof)
Known
3ad28..
cases_2
:
∀ x0 .
In
x0
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Theorem
b5384..
tuple_2_in_A_2
:
∀ x0 x1 x2 .
In
x0
x2
⟶
In
x1
x2
⟶
In
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
(
setexp
x2
2
)
(proof)
Known
416bd..
cases_3
:
∀ x0 .
In
x0
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
Theorem
42b05..
tuple_3_in_A_3
:
∀ x0 x1 x2 x3 .
In
x0
x3
⟶
In
x1
x3
⟶
In
x2
x3
⟶
In
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
(
setexp
x3
3
)
(proof)
Known
480eb..
inj_def
:
inj
=
λ x1 x2 .
λ x3 :
ι → ι
.
and
(
∀ x4 .
In
x4
x1
⟶
In
(
x3
x4
)
x2
)
(
∀ x4 .
In
x4
x1
⟶
∀ x5 .
In
x5
x1
⟶
x3
x4
=
x3
x5
⟶
x4
=
x5
)
Theorem
1796e..
injI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
In
(
x2
x3
)
x1
)
⟶
(
∀ x3 .
In
x3
x0
⟶
∀ x4 .
In
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
inj
x0
x1
x2
(proof)
Theorem
e6daf..
injE_impred
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
inj
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
In
x4
x0
⟶
In
(
x2
x4
)
x1
)
⟶
(
∀ x4 .
In
x4
x0
⟶
∀ x5 .
In
x5
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
x3
)
⟶
x3
(proof)
Known
9276c..
bij_def
:
bij
=
λ x1 x2 .
λ x3 :
ι → ι
.
and
(
inj
x1
x2
x3
)
(
∀ x4 .
In
x4
x2
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
In
x6
x1
)
(
x3
x6
=
x4
)
⟶
x5
)
⟶
x5
)
Theorem
e5c63..
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
inj
x0
x1
x2
⟶
(
∀ x3 .
In
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
In
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
(proof)
Theorem
80a11..
bijE_impred
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
inj
x0
x1
x2
⟶
(
∀ x4 .
In
x4
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
In
x6
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Known
fed08..
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
47706..
xmcases
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
x1
Known
74738..
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Known
165f2..
ordsuccI1
:
∀ x0 .
Subq
x0
(
ordsucc
x0
)
Known
840d1..
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
In
x1
x0
⟶
In
(
ordsucc
x1
)
(
ordsucc
x0
)
Known
21479..
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
b4776..
ordsuccE_impred
:
∀ x0 x1 .
In
x1
(
ordsucc
x0
)
⟶
∀ x2 : ο .
(
In
x1
x0
⟶
x2
)
⟶
(
x1
=
x0
⟶
x2
)
⟶
x2
Known
e85f6..
In_irref
:
∀ x0 .
nIn
x0
x0
Known
cf025..
ordsuccI2
:
∀ x0 .
In
x0
(
ordsucc
x0
)
Theorem
ebcfc..
PigeonHole_nat
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
In
x2
(
ordsucc
x0
)
⟶
In
(
x1
x2
)
x0
)
⟶
not
(
∀ x2 .
In
x2
(
ordsucc
x0
)
⟶
∀ x3 .
In
x3
(
ordsucc
x0
)
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
(proof)
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Theorem
398e3..
PigeonHole_nat_bij
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
In
x2
x0
⟶
In
(
x1
x2
)
x0
)
⟶
(
∀ x2 .
In
x2
x0
⟶
∀ x3 .
In
x3
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
bij
x0
x0
x1
(proof)
Known
36841..
nat_2
:
nat_p
2
Theorem
32c65..
tuple_2_bij_2
:
∀ x0 x1 .
In
x0
2
⟶
In
x1
2
⟶
not
(
x0
=
x1
)
⟶
bij
2
2
(
ap
(
lam
2
(
λ x2 .
If_i
(
x2
=
0
)
x0
x1
)
)
)
(proof)
Theorem
c1fe0..
tuple_3_bij_3
:
∀ x0 x1 x2 .
In
x0
3
⟶
In
x1
3
⟶
In
x2
3
⟶
not
(
x0
=
x1
)
⟶
not
(
x0
=
x2
)
⟶
not
(
x1
=
x2
)
⟶
bij
3
3
(
ap
(
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
x1
x2
)
)
)
)
(proof)
previous assets