Search for blocks/addresses/...

Proofgold Address

address
PUKRizaUQejRt3KkkFJUZH9rfQLtU2Uq5AX
total
0
mg
-
conjpub
-
current assets
4c1c5../09f4f.. bday: 15508 doc published by Pr4zB..
Param nat_pnat_p : ιο
Param add_natadd_nat : ιιι
Param ordsuccordsucc : ιι
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_ordsucc_in_ordsuccnat_ordsucc_in_ordsucc : ∀ x0 . nat_p x0∀ x1 . x1x0ordsucc x1ordsucc x0
Known add_nat_padd_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1)
Theorem 85b3a..add_nat_In_R : ∀ x0 . nat_p x0∀ x1 . x1x0∀ x2 . nat_p x2add_nat x1 x2add_nat x0 x2 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param ordinalordinal : ιο
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known nat_transnat_trans : ∀ x0 . nat_p x0∀ x1 . x1x0x1x0
Known Subq_refSubq_ref : ∀ x0 . x0x0
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Theorem 116d8.. : ∀ x0 x1 . nat_p x0nat_p x1x0x1∀ x2 . nat_p x2add_nat x0 x2add_nat x1 x2 (proof)
Known add_nat_comadd_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat x0 x1 = add_nat x1 x0
Theorem abb9e.. : ∀ x0 x1 . nat_p x0nat_p x1x0x1∀ x2 . nat_p x2add_nat x2 x0add_nat x2 x1 (proof)
Param mul_natmul_nat : ιιι
Known mul_nat_0Rmul_nat_0R : ∀ x0 . mul_nat x0 0 = 0
Known mul_nat_SRmul_nat_SR : ∀ x0 x1 . nat_p x1mul_nat x0 (ordsucc x1) = add_nat x0 (mul_nat x0 x1)
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known mul_nat_pmul_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (mul_nat x0 x1)
Theorem 4324d..mul_nat_Subq_R : ∀ x0 x1 . nat_p x0nat_p x1x0x1∀ x2 . nat_p x2mul_nat x0 x2mul_nat x1 x2 (proof)
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Definition Sigma_nat := λ x0 . λ x1 : ι → ι . nat_primrec 0 (λ x2 x3 . add_nat x3 (x1 x2)) x0
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Theorem bbccf.. : ∀ x0 : ι → ι . Sigma_nat 0 x0 = 0 (proof)
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Theorem 492bc.. : ∀ x0 . nat_p x0∀ x1 : ι → ι . Sigma_nat (ordsucc x0) x1 = add_nat (Sigma_nat x0 x1) (x1 x0) (proof)
Known nat_0nat_0 : nat_p 0
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem 330aa.. : ∀ x0 . nat_p x0∀ x1 : ι → ι . (∀ x2 . x2x0nat_p (x1 x2))nat_p (Sigma_nat x0 x1) (proof)
Definition exp_natexp_nat := λ x0 . nat_primrec 1 (λ x1 . mul_nat x0)
Known In_0_1In_0_1 : 01
Known mul_nat_SLmul_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1mul_nat (ordsucc x0) x1 = add_nat (mul_nat x0 x1) x1
Known 4f402..exp_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (exp_nat x0 x1)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Theorem 45039.. : ∀ x0 . nat_p x0∀ x1 . nat_p x1∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3ordsucc x0)Sigma_nat x1 (λ x3 . mul_nat (x2 x3) (exp_nat (ordsucc x0) x3))exp_nat (ordsucc x0) x1 (proof)
Known nat_1nat_1 : nat_p 1
Theorem bdfcb.. : ∀ x0 . nat_p x0∀ x1 : ι → ι . (∀ x2 . x2x0x1 x22)Sigma_nat x0 (λ x2 . mul_nat (x1 x2) (exp_nat 2 x2))exp_nat 2 x0 (proof)
Theorem 7a596.. : add_nat 32 1 = 33 (proof)
Theorem ef922.. : add_nat 32 2 = 34 (proof)
Known nat_2nat_2 : nat_p 2
Theorem e6aba.. : add_nat 32 3 = 35 (proof)
Known nat_3nat_3 : nat_p 3
Theorem 4470a.. : add_nat 32 4 = 36 (proof)
Known nat_4nat_4 : nat_p 4
Theorem 834ba.. : add_nat 32 5 = 37 (proof)
Known nat_5nat_5 : nat_p 5
Theorem 777a2.. : add_nat 32 6 = 38 (proof)
Known nat_6nat_6 : nat_p 6
Theorem 15f5b.. : add_nat 32 7 = 39 (proof)
Known nat_7nat_7 : nat_p 7
Theorem 8b5c1.. : add_nat 32 8 = 40 (proof)
Known nat_8nat_8 : nat_p 8
Theorem c828e.. : add_nat 32 9 = 41 (proof)
Param apap : ιιι
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Known tuple_6_5_eqtuple_6_5_eq : ∀ x0 x1 x2 x3 x4 x5 . ap (lam 6 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) x1 (If_i (x7 = 2) x2 (If_i (x7 = 3) x3 (If_i (x7 = 4) x4 x5)))))) 5 = x5
Known f11bb.. : ∀ x0 . nat_p x0mul_nat 1 x0 = x0
Known tuple_6_4_eqtuple_6_4_eq : ∀ x0 x1 x2 x3 x4 x5 . ap (lam 6 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) x1 (If_i (x7 = 2) x2 (If_i (x7 = 3) x3 (If_i (x7 = 4) x4 x5)))))) 4 = x4
Known mul_nat_0Lmul_nat_0L : ∀ x0 . nat_p x0mul_nat 0 x0 = 0
Known tuple_6_3_eqtuple_6_3_eq : ∀ x0 x1 x2 x3 x4 x5 . ap (lam 6 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) x1 (If_i (x7 = 2) x2 (If_i (x7 = 3) x3 (If_i (x7 = 4) x4 x5)))))) 3 = x3
Known tuple_6_2_eqtuple_6_2_eq : ∀ x0 x1 x2 x3 x4 x5 . ap (lam 6 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) x1 (If_i (x7 = 2) x2 (If_i (x7 = 3) x3 (If_i (x7 = 4) x4 x5)))))) 2 = x2
Known tuple_6_1_eqtuple_6_1_eq : ∀ x0 x1 x2 x3 x4 x5 . ap (lam 6 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) x1 (If_i (x7 = 2) x2 (If_i (x7 = 3) x3 (If_i (x7 = 4) x4 x5)))))) 1 = x1
Known tuple_6_0_eqtuple_6_0_eq : ∀ x0 x1 x2 x3 x4 x5 . ap (lam 6 (λ x7 . If_i (x7 = 0) x0 (If_i (x7 = 1) x1 (If_i (x7 = 2) x2 (If_i (x7 = 3) x3 (If_i (x7 = 4) x4 x5)))))) 0 = x0
Known adab1.. : exp_nat 2 3 = 8
Known e089c.. : exp_nat 2 5 = 32
Known add_nat_0Ladd_nat_0L : ∀ x0 . nat_p x0add_nat 0 x0 = x0
Known 9dea5.. : add_nat 8 1 = 9
Known nat_9nat_9 : nat_p 9
Known 1f846.. : nat_p 32
Theorem 0c734.. : Sigma_nat 6 (λ x1 . mul_nat (ap (lam 6 (λ x2 . If_i (x2 = 0) 1 (If_i (x2 = 1) 0 (If_i (x2 = 2) 0 (If_i (x2 = 3) 1 (If_i (x2 = 4) 0 1)))))) x1) (exp_nat 2 x1)) = 41 (proof)

previous assets