Search for blocks/addresses/...

Proofgold Address

address
PUKdCvxi7BVbtDixeS6euxe6eqiYhacYkh6
total
0
mg
-
conjpub
-
current assets
e673d../c99ad.. bday: 25625 doc published by PrGxv..
Param intint : ι
Param mul_SNomul_SNo : ιιι
Param add_SNoadd_SNo : ιιι
Param ordsuccordsucc : ιι
Param If_iIf_i : οιιι
Param SNoLeSNoLe : ιιο
Param minus_SNominus_SNo : ιι
Conjecture df91b..A9974 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 . x19int∀ x20 . x20int∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25int∀ x26 . x26intx0 x25 x26 = mul_SNo (add_SNo 2 (add_SNo 2 x26)) x25)x1 = 2(∀ x25 . x25intx2 x25 = x25)(∀ x25 . x25int∀ x26 . x26intx3 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x3 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25intx4 x25 = x3 x1 (x2 x25))(∀ x25 . x25intx5 x25 = x4 x25)(∀ x25 . x25intx6 x25 = x25)x7 = 1(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x5 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x6 x25) x7)(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25intx11 x25 = add_SNo x25 x25)(∀ x25 . x25intx12 x25 = x25)x13 = 1(∀ x25 . x25int∀ x26 . x26intx14 x25 x26 = If_i (SNoLe x25 0) x26 (x11 (x14 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx15 x25 = x14 (x12 x25) x13)(∀ x25 . x25int∀ x26 . x26intx16 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx17 x25 x26 = x26)(∀ x25 . x25intx18 x25 = x25)x19 = 1x20 = add_SNo (mul_SNo 2 (mul_SNo 2 (add_SNo 2 2))) (minus_SNo 1)(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx21 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x16 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx22 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x17 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx23 x25 = x21 (x18 x25) x19 x20)(∀ x25 . x25intx24 x25 = mul_SNo (x15 x25) (x23 x25))∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture 97090..A9973 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 . x17int∀ x18 : ι → ι → ι . (∀ x19 . x19int∀ x20 . x20intx18 x19 x20int)∀ x19 . x19int∀ x20 . x20int∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25int∀ x26 . x26intx0 x25 x26 = mul_SNo (add_SNo 2 (add_SNo 2 x26)) x25)x1 = 2(∀ x25 . x25intx2 x25 = x25)(∀ x25 . x25int∀ x26 . x26intx3 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x3 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25intx4 x25 = x3 x1 (x2 x25))(∀ x25 . x25intx5 x25 = add_SNo (x4 x25) (minus_SNo x25))(∀ x25 . x25intx6 x25 = x25)x7 = 1(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x5 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x6 x25) x7)(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25int∀ x26 . x26intx11 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx12 x25 x26 = x26)(∀ x25 . x25intx13 x25 = x25)x14 = 1(∀ x25 . x25intx15 x25 = mul_SNo (mul_SNo x25 x25) x25)x16 = 1x17 = add_SNo 1 2(∀ x25 . x25int∀ x26 . x26intx18 x25 x26 = If_i (SNoLe x25 0) x26 (x15 (x18 (add_SNo x25 (minus_SNo 1)) x26)))x19 = x18 x16 x17x20 = add_SNo 2 x19(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx21 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x11 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx22 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x12 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx23 x25 = x21 (x13 x25) x14 x20)(∀ x25 . x25intx24 x25 = x23 x25)∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture 524cc..A9972 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 . x19int∀ x20 . x20int∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25int∀ x26 . x26intx0 x25 x26 = add_SNo (mul_SNo x25 x25) x26)x1 = 2x2 = 2(∀ x25 . x25int∀ x26 . x26intx3 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x3 (add_SNo x25 (minus_SNo 1)) x26) x25))x4 = x3 x1 x2(∀ x25 . x25intx5 x25 = add_SNo (mul_SNo x4 x25) x25)(∀ x25 . x25intx6 x25 = x25)x7 = 1(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x5 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x6 x25) x7)(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25intx11 x25 = add_SNo x25 x25)(∀ x25 . x25intx12 x25 = x25)x13 = 1(∀ x25 . x25int∀ x26 . x26intx14 x25 x26 = If_i (SNoLe x25 0) x26 (x11 (x14 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx15 x25 = x14 (x12 x25) x13)(∀ x25 . x25int∀ x26 . x26intx16 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx17 x25 x26 = x26)(∀ x25 . x25intx18 x25 = x25)x19 = 1x20 = add_SNo 2 (mul_SNo 2 (add_SNo 2 (add_SNo 2 2)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx21 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x16 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx22 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x17 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx23 x25 = x21 (x18 x25) x19 x20)(∀ x25 . x25intx24 x25 = mul_SNo (x15 x25) (x23 x25))∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture 24e13..A9971 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 . x12int∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = add_SNo (add_SNo x20 x20) x20)(∀ x20 . x20intx1 x20 = add_SNo (add_SNo x20 x20) x20)x2 = 1(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx4 x20 = x3 (x1 x20) x2)(∀ x20 . x20intx5 x20 = x4 x20)(∀ x20 . x20intx6 x20 = mul_SNo (mul_SNo x20 x20) x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx9 x20 x21 = x21)(∀ x20 . x20intx10 x20 = x20)x11 = 1x12 = add_SNo 1 2(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx13 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x8 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx14 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x9 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx15 x20 = x13 (x10 x20) x11 x12)(∀ x20 . x20intx16 x20 = x15 x20)(∀ x20 . x20int∀ x21 . x21intx17 x20 x21 = If_i (SNoLe x20 0) x21 (x6 (x17 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx18 x20 = x17 x7 (x16 x20))(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x5 x20 = x19 x20
Conjecture e44ea..A9969 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 . x12int∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = add_SNo (mul_SNo 2 (add_SNo x20 x20)) x20)(∀ x20 . x20intx1 x20 = add_SNo x20 x20)x2 = 1(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx4 x20 = x3 (x1 x20) x2)(∀ x20 . x20intx5 x20 = x4 x20)(∀ x20 . x20intx6 x20 = mul_SNo x20 x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx9 x20 x21 = x21)(∀ x20 . x20intx10 x20 = x20)x11 = 1x12 = add_SNo 1 (add_SNo 2 2)(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx13 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x8 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx14 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x9 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx15 x20 = x13 (x10 x20) x11 x12)(∀ x20 . x20intx16 x20 = x15 x20)(∀ x20 . x20int∀ x21 . x21intx17 x20 x21 = If_i (SNoLe x20 0) x21 (x6 (x17 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx18 x20 = x17 x7 (x16 x20))(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x5 x20 = x19 x20
Conjecture f25dd..A9966 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 . x21int∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25int∀ x26 . x26intx0 x25 x26 = mul_SNo x25 x26)x1 = add_SNo 2 2(∀ x25 . x25intx2 x25 = x25)(∀ x25 . x25int∀ x26 . x26intx3 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x3 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25intx4 x25 = x3 x1 (x2 x25))(∀ x25 . x25intx5 x25 = add_SNo (add_SNo (x4 x25) (minus_SNo x25)) (minus_SNo x25))(∀ x25 . x25intx6 x25 = x25)x7 = 1(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x5 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x6 x25) x7)(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25int∀ x26 . x26intx11 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx12 x25 x26 = x26)(∀ x25 . x25intx13 x25 = add_SNo x25 (minus_SNo 1))x14 = 1x15 = add_SNo 1 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx16 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x11 (x16 (add_SNo x25 (minus_SNo 1)) x26 x27) (x17 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx17 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x12 (x16 (add_SNo x25 (minus_SNo 1)) x26 x27) (x17 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx18 x25 = x16 (x13 x25) x14 x15)(∀ x25 . x25intx19 x25 = add_SNo x25 x25)(∀ x25 . x25intx20 x25 = x25)x21 = 1(∀ x25 . x25int∀ x26 . x26intx22 x25 x26 = If_i (SNoLe x25 0) x26 (x19 (x22 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx23 x25 = x22 (x20 x25) x21)(∀ x25 . x25intx24 x25 = mul_SNo (x18 x25) (mul_SNo (If_i (SNoLe x25 0) 1 (add_SNo 1 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2))))) (x23 x25)))∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture 9e27f..A9964 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = mul_SNo 2 (add_SNo 2 x20))x1 = 2x2 = 2(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))x4 = x3 x1 x2(∀ x20 . x20intx5 x20 = mul_SNo x4 x20)(∀ x20 . x20intx6 x20 = x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = x9 x20)(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = x21)(∀ x20 . x20intx13 x20 = x20)x14 = 1x15 = mul_SNo 2 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture 60cc8..A99035 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)(∀ x12 . x12intx0 x12 = add_SNo 2 (add_SNo x12 x12))(∀ x12 . x12intx1 x12 = x12)(∀ x12 . x12intx2 x12 = x12)(∀ x12 . x12int∀ x13 . x13intx3 x12 x13 = If_i (SNoLe x12 0) x13 (x0 (x3 (add_SNo x12 (minus_SNo 1)) x13)))(∀ x12 . x12intx4 x12 = x3 (x1 x12) (x2 x12))(∀ x12 . x12intx5 x12 = add_SNo 1 (x4 x12))(∀ x12 . x12intx6 x12 = add_SNo x12 x12)(∀ x12 . x12intx7 x12 = x12)(∀ x12 . x12intx8 x12 = add_SNo 2 x12)(∀ x12 . x12int∀ x13 . x13intx9 x12 x13 = If_i (SNoLe x12 0) x13 (x6 (x9 (add_SNo x12 (minus_SNo 1)) x13)))(∀ x12 . x12intx10 x12 = x9 (x7 x12) (x8 x12))(∀ x12 . x12intx11 x12 = add_SNo (x10 x12) (minus_SNo 1))∀ x12 . x12intSNoLe 0 x12x5 x12 = x11 x12
Conjecture bf858..A98533 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι → ι . (∀ x3 . x3int∀ x4 . x4intx2 x3 x4int)∀ x3 . x3int∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 . x10int∀ x11 . x11int∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι . (∀ x16 . x16int∀ x17 . x17intx15 x16 x17int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι . (∀ x23 . x23intx22 x23int)∀ x23 . x23int∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)∀ x25 : ι → ι → ι . (∀ x26 . x26int∀ x27 . x27intx25 x26 x27int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)∀ x28 . x28int∀ x29 : ι → ι → ι . (∀ x30 . x30int∀ x31 . x31intx29 x30 x31int)∀ x30 : ι → ι . (∀ x31 . x31intx30 x31int)∀ x31 : ι → ι . (∀ x32 . x32intx31 x32int)∀ x32 . x32int∀ x33 . x33int∀ x34 : ι → ι → ι → ι . (∀ x35 . x35int∀ x36 . x36int∀ x37 . x37intx34 x35 x36 x37int)∀ x35 : ι → ι → ι → ι . (∀ x36 . x36int∀ x37 . x37int∀ x38 . x38intx35 x36 x37 x38int)∀ x36 : ι → ι . (∀ x37 . x37intx36 x37int)∀ x37 : ι → ι . (∀ x38 . x38intx37 x38int)∀ x38 : ι → ι → ι . (∀ x39 . x39int∀ x40 . x40intx38 x39 x40int)∀ x39 : ι → ι . (∀ x40 . x40intx39 x40int)∀ x40 : ι → ι . (∀ x41 . x41intx40 x41int)∀ x41 . x41int∀ x42 : ι → ι → ι . (∀ x43 . x43int∀ x44 . x44intx42 x43 x44int)∀ x43 : ι → ι → ι . (∀ x44 . x44int∀ x45 . x45intx43 x44 x45int)∀ x44 : ι → ι → ι . (∀ x45 . x45int∀ x46 . x46intx44 x45 x46int)∀ x45 : ι → ι → ι . (∀ x46 . x46int∀ x47 . x47intx45 x46 x47int)∀ x46 : ι → ι . (∀ x47 . x47intx46 x47int)∀ x47 . x47int∀ x48 : ι → ι → ι . (∀ x49 . x49int∀ x50 . x50intx48 x49 x50int)∀ x49 : ι → ι . (∀ x50 . x50intx49 x50int)∀ x50 : ι → ι . (∀ x51 . x51intx50 x51int)(∀ x51 . x51int∀ x52 . x52intx0 x51 x52 = add_SNo x51 x52)(∀ x51 . x51intx1 x51 = x51)(∀ x51 . x51int∀ x52 . x52intx2 x51 x52 = x52)x3 = 0(∀ x51 . x51intx4 x51 = x51)(∀ x51 . x51int∀ x52 . x52int∀ x53 . x53intx5 x51 x52 x53 = If_i (SNoLe x51 0) x52 (x0 (x5 (add_SNo x51 (minus_SNo 1)) x52 x53) (x6 (add_SNo x51 (minus_SNo 1)) x52 x53)))(∀ x51 . x51int∀ x52 . x52int∀ x53 . x53intx6 x51 x52 x53 = If_i (SNoLe x51 0) x53 (x1 (x5 (add_SNo x51 (minus_SNo 1)) x52 x53)))(∀ x51 . x51int∀ x52 . x52intx7 x51 x52 = x5 (x2 x51 x52) x3 (x4 x51))(∀ x51 . x51int∀ x52 . x52intx8 x51 x52 = mul_SNo (x7 x51 x52) x51)(∀ x51 . x51int∀ x52 . x52intx9 x51 x52 = x52)x10 = add_SNo 1 2x11 = 1(∀ x51 . x51int∀ x52 . x52intx12 x51 x52 = x52)(∀ x51 . x51int∀ x52 . x52int∀ x53 . x53intx13 x51 x52 x53 = If_i (SNoLe x51 0) x52 (x8 (x13 (add_SNo x51 (minus_SNo 1)) x52 x53) (x14 (add_SNo x51 (minus_SNo 1)) x52 x53)))(∀ x51 . x51int∀ x52 . x52int∀ x53 . x53intx14 x51 x52 x53 = If_i (SNoLe x51 0) x53 (x9 (x13 (add_SNo x51 (minus_SNo 1)) x52 x53) (x14 (add_SNo x51 (minus_SNo 1)) x52 x53)))(∀ x51 . x51int∀ x52 . x52intx15 x51 x52 = x13 x10 x11 (x12 x51 x52))(∀ x51 . x51int∀ x52 . x52intx16 x51 x52 = add_SNo (x15 x51 x52) x51)(∀ x51 . x51intx17 x51 = x51)x18 = 0(∀ x51 . x51int∀ x52 . x52intx19 x51 x52 = If_i (SNoLe x51 0) x52 (x16 (x19 (add_SNo x51 (minus_SNo 1)) x52) x51))(∀ x51 . x51intx20 x51 = x19 (x17 x51) x18)(∀ x51 . x51intx21 x51 = x20 x51)(∀ x51 . x51intx22 x51 = mul_SNo (mul_SNo x51 x51) x51)x23 = 1(∀ x51 . x51intx24 x51 = mul_SNo x51 x51)(∀ x51 . x51int∀ x52 . x52intx25 x51 x52 = If_i (SNoLe x51 0) x52 (x22 (x25 (add_SNo x51 (minus_SNo 1)) x52)))(∀ x51 . x51intx26 x51 = x25 x23 (x24 x51))(∀ x51 . x51intx27 x51 = mul_SNo (x26 x51) x51)x28 = 1(∀ x51 . x51int∀ x52 . x52intx29 x51 x52 = add_SNo x51 x52)(∀ x51 . x51intx30 x51 = x51)(∀ x51 . x51intx31 x51 = add_SNo x51 (minus_SNo 2))x32 = 1x33 = 1(∀ x51 . x51int∀ x52 . x52int∀ x53 . x53intx34 x51 x52 x53 = If_i (SNoLe x51 0) x52 (x29 (x34 (add_SNo x51 (minus_SNo 1)) x52 x53) (x35 (add_SNo x51 (minus_SNo 1)) x52 x53)))(∀ x51 . x51int∀ x52 . x52int∀ x53 . x53intx35 x51 x52 x53 = If_i (SNoLe x51 0) x53 (x30 (x34 (add_SNo x51 (minus_SNo 1)) x52 x53)))(∀ x51 . x51intx36 x51 = x34 (x31 x51) x32 x33)(∀ x51 . x51intx37 x51 = x36 x51)(∀ x51 . x51int∀ x52 . x52intx38 x51 x52 = If_i (SNoLe x51 0) x52 (x27 (x38 (add_SNo x51 (minus_SNo 1)) x52)))(∀ x51 . x51intx39 x51 = x38 x28 (x37 x51))(∀ x51 . x51intx40 x51 = x39 x51)x41 = 1(∀ x51 . x51int∀ x52 . x52intx42 x51 x52 = x52)(∀ x51 . x51int∀ x52 . x52intx43 x51 x52 = If_i (SNoLe x51 0) x52 (x40 (x43 (add_SNo x51 (minus_SNo 1)) x52)))(∀ x51 . x51int∀ x52 . x52intx44 x51 x52 = x43 x41 (x42 x51 x52))(∀ x51 . x51int∀ x52 . x52intx45 x51 x52 = add_SNo (x44 x51 x52) x51)(∀ x51 . x51intx46 x51 = x51)x47 = 0(∀ x51 . x51int∀ x52 . x52intx48 x51 x52 = If_i (SNoLe x51 0) x52 (x45 (x48 (add_SNo x51 (minus_SNo 1)) x52) x51))(∀ x51 . x51intx49 x51 = x48 (x46 x51) x47)(∀ x51 . x51intx50 x51 = x49 x51)∀ x51 . x51intSNoLe 0 x51x21 x51 = x50 x51
Conjecture d4ab8..A98261 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28intx0 x28 = mul_SNo x28 x28)x1 = 2x2 = add_SNo 1 (add_SNo 2 2)(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29)))x4 = x3 x1 x2(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (mul_SNo (add_SNo 2 x4) x28) x29)(∀ x28 . x28intx6 x28 = add_SNo 0 (minus_SNo x28))(∀ x28 . x28intx7 x28 = x28)x8 = 1x9 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx10 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x5 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30) (x11 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx11 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x6 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx12 x28 = x10 (x7 x28) x8 x9)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28intx14 x28 = mul_SNo x28 x28)x15 = 2x16 = add_SNo 1 (add_SNo 2 2)(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29)))x18 = x17 x15 x16(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = add_SNo (mul_SNo (add_SNo 2 x18) x28) (minus_SNo x29))(∀ x28 . x28intx20 x28 = x28)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = add_SNo 0 (minus_SNo 1)(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture 11490..A98255 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 . x6int∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 . x9int∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 . x14int∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 . x20int∀ x21 . x21int∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 . x23int∀ x24 : ι → ι → ι . (∀ x25 . x25int∀ x26 . x26intx24 x25 x26int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 . x27int∀ x28 . x28int∀ x29 : ι → ι → ι → ι . (∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx29 x30 x31 x32int)∀ x30 : ι → ι → ι → ι . (∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx30 x31 x32 x33int)∀ x31 : ι → ι . (∀ x32 . x32intx31 x32int)∀ x32 : ι → ι . (∀ x33 . x33intx32 x33int)(∀ x33 . x33intx0 x33 = mul_SNo x33 x33)x1 = 1(∀ x33 . x33intx2 x33 = mul_SNo 2 (add_SNo 2 x33))x3 = 2x4 = 2(∀ x33 . x33int∀ x34 . x34intx5 x33 x34 = If_i (SNoLe x33 0) x34 (x2 (x5 (add_SNo x33 (minus_SNo 1)) x34)))x6 = x5 x3 x4x7 = add_SNo 1 x6(∀ x33 . x33int∀ x34 . x34intx8 x33 x34 = If_i (SNoLe x33 0) x34 (x0 (x8 (add_SNo x33 (minus_SNo 1)) x34)))x9 = x8 x1 x7(∀ x33 . x33int∀ x34 . x34intx10 x33 x34 = add_SNo (mul_SNo (add_SNo 2 x9) x33) (minus_SNo x34))(∀ x33 . x33intx11 x33 = x33)(∀ x33 . x33intx12 x33 = x33)x13 = 1x14 = add_SNo 0 (minus_SNo 1)(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx15 x33 x34 x35 = If_i (SNoLe x33 0) x34 (x10 (x15 (add_SNo x33 (minus_SNo 1)) x34 x35) (x16 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx16 x33 x34 x35 = If_i (SNoLe x33 0) x35 (x11 (x15 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33intx17 x33 = x15 (x12 x33) x13 x14)(∀ x33 . x33intx18 x33 = x17 x33)(∀ x33 . x33intx19 x33 = mul_SNo (add_SNo 2 x33) (mul_SNo x33 x33))x20 = 1x21 = add_SNo 1 (add_SNo 2 (add_SNo 2 2))(∀ x33 . x33int∀ x34 . x34intx22 x33 x34 = If_i (SNoLe x33 0) x34 (x19 (x22 (add_SNo x33 (minus_SNo 1)) x34)))x23 = x22 x20 x21(∀ x33 . x33int∀ x34 . x34intx24 x33 x34 = add_SNo (mul_SNo (add_SNo 2 x23) x33) (minus_SNo x34))(∀ x33 . x33intx25 x33 = x33)(∀ x33 . x33intx26 x33 = x33)x27 = 1x28 = add_SNo 0 (minus_SNo 1)(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx29 x33 x34 x35 = If_i (SNoLe x33 0) x34 (x24 (x29 (add_SNo x33 (minus_SNo 1)) x34 x35) (x30 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx30 x33 x34 x35 = If_i (SNoLe x33 0) x35 (x25 (x29 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33intx31 x33 = x29 (x26 x33) x27 x28)(∀ x33 . x33intx32 x33 = x31 x33)∀ x33 . x33intSNoLe 0 x33x18 x33 = x32 x33
Conjecture 86b3a..A98251 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 . x20int∀ x21 . x21int∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 . x23int∀ x24 : ι → ι → ι . (∀ x25 . x25int∀ x26 . x26intx24 x25 x26int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 . x27int∀ x28 . x28int∀ x29 : ι → ι → ι → ι . (∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx29 x30 x31 x32int)∀ x30 : ι → ι → ι → ι . (∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx30 x31 x32 x33int)∀ x31 : ι → ι . (∀ x32 . x32intx31 x32int)∀ x32 : ι → ι . (∀ x33 . x33intx32 x33int)(∀ x33 . x33int∀ x34 . x34intx0 x33 x34 = add_SNo (mul_SNo (add_SNo 2 x33) (add_SNo 2 x33)) x34)x1 = 2x2 = 2(∀ x33 . x33int∀ x34 . x34intx3 x33 x34 = If_i (SNoLe x33 0) x34 (x0 (x3 (add_SNo x33 (minus_SNo 1)) x34) x33))x4 = x3 x1 x2(∀ x33 . x33int∀ x34 . x34intx5 x33 x34 = add_SNo (mul_SNo x4 x33) (minus_SNo x34))(∀ x33 . x33intx6 x33 = x33)(∀ x33 . x33intx7 x33 = x33)x8 = 1x9 = 0(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx10 x33 x34 x35 = If_i (SNoLe x33 0) x34 (x5 (x10 (add_SNo x33 (minus_SNo 1)) x34 x35) (x11 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx11 x33 x34 x35 = If_i (SNoLe x33 0) x35 (x6 (x10 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33intx12 x33 = x10 (x7 x33) x8 x9)(∀ x33 . x33intx13 x33 = x12 x33)(∀ x33 . x33intx14 x33 = mul_SNo x33 x33)x15 = 1(∀ x33 . x33intx16 x33 = add_SNo 2 (mul_SNo x33 x33))(∀ x33 . x33int∀ x34 . x34intx17 x33 x34 = If_i (SNoLe x33 0) x34 (x14 (x17 (add_SNo x33 (minus_SNo 1)) x34)))(∀ x33 . x33intx18 x33 = x17 x15 (x16 x33))(∀ x33 . x33intx19 x33 = mul_SNo (x18 x33) x33)x20 = 1x21 = add_SNo 1 2(∀ x33 . x33int∀ x34 . x34intx22 x33 x34 = If_i (SNoLe x33 0) x34 (x19 (x22 (add_SNo x33 (minus_SNo 1)) x34)))x23 = x22 x20 x21(∀ x33 . x33int∀ x34 . x34intx24 x33 x34 = add_SNo (mul_SNo x23 x33) (minus_SNo x34))(∀ x33 . x33intx25 x33 = x33)(∀ x33 . x33intx26 x33 = x33)x27 = 1x28 = 0(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx29 x33 x34 x35 = If_i (SNoLe x33 0) x34 (x24 (x29 (add_SNo x33 (minus_SNo 1)) x34 x35) (x30 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx30 x33 x34 x35 = If_i (SNoLe x33 0) x35 (x25 (x29 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33intx31 x33 = x29 (x26 x33) x27 x28)(∀ x33 . x33intx32 x33 = x31 x33)∀ x33 . x33intSNoLe 0 x33x13 x33 = x32 x33
Conjecture 086bb..A98249 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 . x15int∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28int∀ x29 . x29intx0 x28 x29 = add_SNo (mul_SNo x28 x28) x29)x1 = 2x2 = add_SNo 2 2(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29) x28))x4 = x3 x1 x2(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (mul_SNo x4 x28) x29)(∀ x28 . x28intx6 x28 = add_SNo 0 (minus_SNo x28))(∀ x28 . x28intx7 x28 = x28)x8 = 1x9 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx10 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x5 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30) (x11 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx11 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x6 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx12 x28 = x10 (x7 x28) x8 x9)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28int∀ x29 . x29intx14 x28 x29 = add_SNo (mul_SNo x28 x28) x29)x15 = 2x16 = add_SNo 2 2(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29) x28))x18 = x17 x15 x16(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = add_SNo (mul_SNo x18 x28) (minus_SNo x29))(∀ x28 . x28intx20 x28 = x28)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = add_SNo 0 (minus_SNo 1)(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture 52a6b..A98127 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 . x5int∀ x6 . x6int∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 . x17int∀ x18 . x18int∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι → ι → ι . (∀ x21 . x21int∀ x22 . x22int∀ x23 . x23intx20 x21 x22 x23int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι . (∀ x23 . x23intx22 x23int)(∀ x23 . x23int∀ x24 . x24intx0 x23 x24 = x24)(∀ x23 . x23int∀ x24 . x24intx1 x23 x24 = add_SNo x23 x24)(∀ x23 . x23intx2 x23 = x23)x3 = add_SNo 1 (add_SNo 2 (add_SNo 2 2))(∀ x23 . x23intx4 x23 = add_SNo 1 (mul_SNo x23 x23))x5 = 2x6 = 2(∀ x23 . x23int∀ x24 . x24intx7 x23 x24 = If_i (SNoLe x23 0) x24 (x4 (x7 (add_SNo x23 (minus_SNo 1)) x24)))x8 = x7 x5 x6x9 = x8(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx10 x23 x24 x25 = If_i (SNoLe x23 0) x24 (x0 (x10 (add_SNo x23 (minus_SNo 1)) x24 x25) (x11 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx11 x23 x24 x25 = If_i (SNoLe x23 0) x25 (x1 (x10 (add_SNo x23 (minus_SNo 1)) x24 x25) (x11 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23intx12 x23 = x10 (x2 x23) x3 x9)(∀ x23 . x23intx13 x23 = x12 x23)(∀ x23 . x23int∀ x24 . x24intx14 x23 x24 = add_SNo x23 x24)(∀ x23 . x23intx15 x23 = x23)(∀ x23 . x23intx16 x23 = x23)x17 = add_SNo 1 (add_SNo 2 (add_SNo 2 2))x18 = add_SNo 1 (add_SNo 2 (mul_SNo 2 (mul_SNo 2 (add_SNo 2 2))))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx19 x23 x24 x25 = If_i (SNoLe x23 0) x24 (x14 (x19 (add_SNo x23 (minus_SNo 1)) x24 x25) (x20 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx20 x23 x24 x25 = If_i (SNoLe x23 0) x25 (x15 (x19 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23intx21 x23 = x19 (x16 x23) x17 x18)(∀ x23 . x23intx22 x23 = x21 x23)∀ x23 . x23intSNoLe 0 x23x13 x23 = x22 x23
Conjecture 6f95f..A97843 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28int∀ x29 . x29intx0 x28 x29 = mul_SNo (add_SNo 2 x29) x28)x1 = 2(∀ x28 . x28intx2 x28 = x28)(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29) x28))(∀ x28 . x28intx4 x28 = x3 x1 (x2 x28))(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (add_SNo (x4 x28) (minus_SNo x28)) x29)(∀ x28 . x28intx6 x28 = x28)(∀ x28 . x28intx7 x28 = add_SNo x28 x28)x8 = 1x9 = 0(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx10 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x5 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30) (x11 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx11 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x6 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx12 x28 = x10 (x7 x28) x8 x9)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28intx14 x28 = mul_SNo (mul_SNo x28 x28) x28)x15 = 1x16 = add_SNo 1 (add_SNo 2 2)(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29)))x18 = x17 x15 x16(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = add_SNo (mul_SNo (add_SNo x18 (minus_SNo 2)) x28) (minus_SNo x29))(∀ x28 . x28intx20 x28 = x28)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture 6c3a4..A97830 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 . x17int∀ x18 . x18int∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι → ι → ι . (∀ x21 . x21int∀ x22 . x22int∀ x23 . x23intx20 x21 x22 x23int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι . (∀ x23 . x23intx22 x23int)(∀ x23 . x23intx0 x23 = mul_SNo x23 x23)x1 = 2x2 = 2(∀ x23 . x23int∀ x24 . x24intx3 x23 x24 = If_i (SNoLe x23 0) x24 (x0 (x3 (add_SNo x23 (minus_SNo 1)) x24)))x4 = x3 x1 x2(∀ x23 . x23int∀ x24 . x24intx5 x23 x24 = add_SNo 1 (add_SNo (mul_SNo x4 x23) (minus_SNo x24)))(∀ x23 . x23intx6 x23 = x23)(∀ x23 . x23intx7 x23 = x23)x8 = 1x9 = 0(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx10 x23 x24 x25 = If_i (SNoLe x23 0) x24 (x5 (x10 (add_SNo x23 (minus_SNo 1)) x24 x25) (x11 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx11 x23 x24 x25 = If_i (SNoLe x23 0) x25 (x6 (x10 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23intx12 x23 = x10 (x7 x23) x8 x9)(∀ x23 . x23intx13 x23 = x12 x23)(∀ x23 . x23int∀ x24 . x24intx14 x23 x24 = add_SNo (mul_SNo (mul_SNo 2 (mul_SNo 2 (add_SNo 2 2))) x23) (minus_SNo (add_SNo x24 (minus_SNo 1))))(∀ x23 . x23intx15 x23 = x23)(∀ x23 . x23intx16 x23 = x23)x17 = 1x18 = 0(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx19 x23 x24 x25 = If_i (SNoLe x23 0) x24 (x14 (x19 (add_SNo x23 (minus_SNo 1)) x24 x25) (x20 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx20 x23 x24 x25 = If_i (SNoLe x23 0) x25 (x15 (x19 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23intx21 x23 = x19 (x16 x23) x17 x18)(∀ x23 . x23intx22 x23 = x21 x23)∀ x23 . x23intSNoLe 0 x23x13 x23 = x22 x23
Conjecture fad6b..A97816 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι → ι . (∀ x3 . x3int∀ x4 . x4intx2 x3 x4int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 . x19int∀ x20 . x20int∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25intx0 x25 = add_SNo (mul_SNo 2 (add_SNo x25 x25)) x25)(∀ x25 . x25intx1 x25 = x25)(∀ x25 . x25int∀ x26 . x26intx2 x25 x26 = add_SNo 1 (mul_SNo x25 x26))(∀ x25 . x25intx3 x25 = x25)x4 = 1(∀ x25 . x25int∀ x26 . x26intx5 x25 x26 = If_i (SNoLe x25 0) x26 (x2 (x5 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25intx6 x25 = x5 (x3 x25) x4)(∀ x25 . x25intx7 x25 = x6 x25)(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x1 x25) (x7 x25))(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25int∀ x26 . x26intx11 x25 x26 = add_SNo 1 (mul_SNo x25 x26))(∀ x25 . x25intx12 x25 = x25)x13 = 1(∀ x25 . x25int∀ x26 . x26intx14 x25 x26 = If_i (SNoLe x25 0) x26 (x11 (x14 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25intx15 x25 = x14 (x12 x25) x13)(∀ x25 . x25int∀ x26 . x26intx16 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx17 x25 x26 = x26)(∀ x25 . x25intx18 x25 = x25)x19 = 1x20 = add_SNo 1 (add_SNo 2 2)(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx21 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x16 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx22 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x17 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx23 x25 = x21 (x18 x25) x19 x20)(∀ x25 . x25intx24 x25 = mul_SNo (x15 x25) (x23 x25))∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture e6dbc..A97781 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28int∀ x29 . x29intx0 x28 x29 = add_SNo (mul_SNo x28 x28) x29)x1 = 2x2 = 2(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29) x28))x4 = x3 x1 x2(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (mul_SNo x4 x28) (minus_SNo x29))(∀ x28 . x28intx6 x28 = x28)(∀ x28 . x28intx7 x28 = x28)x8 = 1x9 = 0(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx10 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x5 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30) (x11 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx11 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x6 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx12 x28 = x10 (x7 x28) x8 x9)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28intx14 x28 = mul_SNo (mul_SNo x28 x28) x28)x15 = 1x16 = add_SNo 1 2(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29)))x18 = x17 x15 x16(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = add_SNo (mul_SNo x18 x28) (minus_SNo x29))(∀ x28 . x28intx20 x28 = x28)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = 0(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture 00c18..A97775 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28intx0 x28 = add_SNo 2 (add_SNo (mul_SNo (add_SNo 1 2) (mul_SNo x28 x28)) x28))x1 = 2x2 = 2(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29)))x4 = x3 x1 x2(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (mul_SNo x4 x28) (minus_SNo x29))(∀ x28 . x28intx6 x28 = x28)(∀ x28 . x28intx7 x28 = x28)x8 = 1x9 = add_SNo 0 (minus_SNo 1)(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx10 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x5 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30) (x11 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx11 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x6 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx12 x28 = x10 (x7 x28) x8 x9)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28intx14 x28 = mul_SNo x28 x28)x15 = 1x16 = mul_SNo 2 (add_SNo 2 (mul_SNo 2 (add_SNo 2 (add_SNo 2 2))))(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29)))x18 = x17 x15 x16(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = add_SNo (mul_SNo (add_SNo 2 x18) x28) (minus_SNo x29))(∀ x28 . x28intx20 x28 = x28)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = add_SNo 0 (minus_SNo 1)(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28
Conjecture c0cf5..A97770 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28int∀ x29 . x29intx0 x28 x29 = mul_SNo x28 x29)x1 = add_SNo 2 2(∀ x28 . x28intx2 x28 = x28)(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29) x28))(∀ x28 . x28intx4 x28 = x3 x1 (x2 x28))(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (x4 x28) x29)(∀ x28 . x28intx6 x28 = x28)(∀ x28 . x28intx7 x28 = add_SNo x28 x28)x8 = 1x9 = 0(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx10 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x5 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30) (x11 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx11 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x6 (x10 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx12 x28 = x10 (x7 x28) x8 x9)(∀ x28 . x28intx13 x28 = x12 x28)(∀ x28 . x28intx14 x28 = mul_SNo (add_SNo 1 x28) (mul_SNo x28 x28))x15 = 1x16 = mul_SNo 2 (add_SNo 2 2)(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x14 (x17 (add_SNo x28 (minus_SNo 1)) x29)))x18 = x17 x15 x16(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = add_SNo (mul_SNo (add_SNo 2 x18) x28) (minus_SNo x29))(∀ x28 . x28intx20 x28 = x28)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = x26 x28)∀ x28 . x28intSNoLe 0 x28x13 x28 = x27 x28

previous assets