Search for blocks/addresses/...
Proofgold Address
address
PULfhLZWhwwHFhSGJFmW9jSzFnntE6EkxUB
total
0
mg
-
conjpub
-
current assets
2b43d..
/
e83db..
bday:
16612
doc published by
PrGxv..
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
omega
omega
:
ι
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
add_nat_add_SNo
add_nat_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
add_SNo
x0
x1
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_4
nat_4
:
nat_p
4
Known
nat_3
nat_3
:
nat_p
3
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Known
nat_1
nat_1
:
nat_p
1
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
add_SNo_4_3
add_SNo_4_3
:
add_SNo
4
3
=
7
(proof)
Param
ordinal
ordinal
:
ι
→
ο
Known
add_SNo_ordinal_SR
add_SNo_ordinal_SR
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
add_SNo
x0
(
ordsucc
x1
)
=
ordsucc
(
add_SNo
x0
x1
)
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Theorem
add_SNo_4_4
add_SNo_4_4
:
add_SNo
4
4
=
8
(proof)
Param
int
int
:
ι
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
Subq_omega_int
Subq_omega_int
:
omega
⊆
int
Theorem
nat_p_int
nat_p_int
:
∀ x0 .
nat_p
x0
⟶
x0
∈
int
(proof)
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
int_minus_SNo_omega
int_minus_SNo_omega
:
∀ x0 .
x0
∈
omega
⟶
minus_SNo
x0
∈
int
Theorem
nat_p_int_minus_SNo
nat_p_int_minus_SNo
:
∀ x0 .
nat_p
x0
⟶
minus_SNo
x0
∈
int
(proof)
Param
SNo
SNo
:
ι
→
ο
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
PNoLt
PNoLt
:
ι
→
(
ι
→
ο
) →
ι
→
(
ι
→
ο
) →
ο
Param
and
and
:
ο
→
ο
→
ο
Param
PNoEq_
PNoEq_
:
ι
→
(
ι
→
ο
) →
(
ι
→
ο
) →
ο
Definition
PNoLe
PNoLe
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
λ x3 :
ι → ο
.
or
(
PNoLt
x0
x1
x2
x3
)
(
and
(
x0
=
x2
)
(
PNoEq_
x0
x1
x3
)
)
Param
SNoLev
SNoLev
:
ι
→
ι
Definition
SNoLe
SNoLe
:=
λ x0 x1 .
PNoLe
(
SNoLev
x0
)
(
λ x2 .
x2
∈
x0
)
(
SNoLev
x1
)
(
λ x2 .
x2
∈
x1
)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
minus_SNo_Le_contra
minus_SNo_Le_contra
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
SNoLe
(
minus_SNo
x1
)
(
minus_SNo
x0
)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Theorem
minus_SNo_Le_swap
minus_SNo_Le_swap
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
(
minus_SNo
x0
)
(proof)
Theorem
minus_SNo_Le_swap2
minus_SNo_Le_swap2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
(
minus_SNo
x0
)
(
add_SNo
x1
(
minus_SNo
x2
)
)
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x0
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
finite_add_SNo
finite_add_SNo
:=
λ x0 .
λ x1 :
ι → ι
.
nat_primrec
0
(
λ x2 x3 .
add_SNo
x3
(
x1
x2
)
)
x0
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Theorem
7d69d..
:
∀ x0 :
ι → ι
.
finite_add_SNo
0
x0
=
0
(proof)
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Theorem
73a8e..
:
∀ x0 :
ι → ι
.
∀ x1 .
nat_p
x1
⟶
finite_add_SNo
(
ordsucc
x1
)
x0
=
add_SNo
(
finite_add_SNo
x1
x0
)
(
x0
x1
)
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
SNo_0
SNo_0
:
SNo
0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
dc840..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
SNo
(
x1
x2
)
)
⟶
SNo
(
finite_add_SNo
x0
x1
)
(proof)
Theorem
055f8..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
finite_add_SNo
x0
x1
=
finite_add_SNo
x0
x2
(proof)
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
In_0_1
In_0_1
:
0
∈
1
Known
add_SNo_minus_SNo_rinv
add_SNo_minus_SNo_rinv
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
(
minus_SNo
x0
)
=
0
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
ordinal_ordsucc_In
ordinal_ordsucc_In
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
add_SNo_Le3
add_SNo_Le3
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLe
x0
x2
⟶
SNoLe
x1
x3
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
Known
add_SNo_com_4_inner_mid
add_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x2
x3
)
=
add_SNo
(
add_SNo
x0
x2
)
(
add_SNo
x1
x3
)
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Theorem
SNo_idl_cycle_nonneg
SNo_idl_cycle_nonneg
:
∀ x0 .
nat_p
x0
⟶
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
ordsucc
x0
⟶
SNo
(
x1
x3
)
)
⟶
(
∀ x3 .
x3
∈
ordsucc
x0
⟶
SNo
(
x2
x3
)
)
⟶
x1
(
ordsucc
x0
)
=
x1
0
⟶
(
∀ x3 .
x3
∈
ordsucc
x0
⟶
SNoLe
(
add_SNo
(
x1
(
ordsucc
x3
)
)
(
minus_SNo
(
x1
x3
)
)
)
(
x2
x3
)
)
⟶
SNoLe
0
(
finite_add_SNo
(
ordsucc
x0
)
x2
)
(proof)
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_add_SNo_4
SNo_add_SNo_4
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
)
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Known
cases_4
cases_4
:
∀ x0 .
x0
∈
4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
x0
Known
tuple_5_0_eq
tuple_5_0_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
0
=
x0
Known
tuple_5_1_eq
tuple_5_1_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
1
=
x1
Known
tuple_5_2_eq
tuple_5_2_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
2
=
x2
Known
tuple_5_3_eq
tuple_5_3_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
3
=
x3
Known
tuple_4_0_eq
tuple_4_0_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
0
=
x0
Known
tuple_4_1_eq
tuple_4_1_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
1
=
x1
Known
tuple_4_2_eq
tuple_4_2_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
2
=
x2
Known
tuple_4_3_eq
tuple_4_3_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
3
=
x3
Known
tuple_5_4_eq
tuple_5_4_eq
:
∀ x0 x1 x2 x3 x4 .
ap
(
lam
5
(
λ x6 .
If_i
(
x6
=
0
)
x0
(
If_i
(
x6
=
1
)
x1
(
If_i
(
x6
=
2
)
x2
(
If_i
(
x6
=
3
)
x3
x4
)
)
)
)
)
4
=
x4
Known
add_SNo_assoc_4
add_SNo_assoc_4
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
=
add_SNo
(
add_SNo
x0
(
add_SNo
x1
x2
)
)
x3
Theorem
idl_negcycle_4
idl_negcycle_4
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNoLt
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
x7
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x4
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x5
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x6
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x3
)
)
x7
⟶
False
(proof)
previous assets