Search for blocks/addresses/...

Proofgold Address

address
PUMUf8Bvbx1vQ8ecxmqrKdvpbBSx4hDERPu
total
0
mg
-
conjpub
-
current assets
d1258../1946d.. bday: 48177 doc published by PrGM6..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 2f869.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)x0 x3 x4x5)x5
Definition 87c36.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5not (x0 x3 x5)x0 x4 x5x6)x6
Definition f201d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6not (x0 x2 x6)x0 x3 x6not (x0 x4 x6)x0 x5 x6x7)x7
Definition 2452c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f201d.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition e643b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (2452c.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)x0 x1 x8x0 x2 x8x0 x3 x8not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 5a3b5.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5not (x0 x3 x5)not (x0 x4 x5)x6)x6
Definition 455db.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (5a3b5.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6not (x0 x2 x6)not (x0 x3 x6)x0 x4 x6x0 x5 x6x7)x7
Definition 70d65.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (455db.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param atleastpatleastp : ιιο
Definition cdfa5.. := λ x0 x1 . λ x2 : ι → ι → ο . ∀ x3 . x3x1atleastp x0 x3not (∀ x4 . x4x3∀ x5 . x5x3(x4 = x5∀ x6 : ο . x6)x2 x4 x5)
Param u4 : ι
Definition 86706.. := cdfa5.. u4
Definition 35fb6.. := λ x0 . λ x1 : ι → ι → ο . 86706.. x0 (λ x2 x3 . not (x1 x2 x3))
Param SetAdjoinSetAdjoin : ιιι
Param UPairUPair : ιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known 7204a.. : ∀ x0 x1 x2 x3 . (x0 = x1∀ x4 : ο . x4)(x0 = x2∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(x0 = x3∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)equip u4 (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3)
Known 58c12.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 x3 x4 . x0 x1 x2x0 x1 x3x0 x1 x4x0 x2 x3x0 x2 x4x0 x3 x4(∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0 x5 x6x0 x6 x5)∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4(x5 = x6∀ x7 : ο . x7)x0 x5 x6
Known c88f0.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0
Theorem d0e0c.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1∀ x15 . x15x1∀ x16 . x16x1(∀ x17 . x17x1∀ x18 . x18x1x0 x17 x18x0 x18 x17)(x2 = x10∀ x17 : ο . x17)(x3 = x10∀ x17 : ο . x17)(x4 = x10∀ x17 : ο . x17)(x5 = x10∀ x17 : ο . x17)(x6 = x10∀ x17 : ο . x17)(x7 = x10∀ x17 : ο . x17)(x8 = x10∀ x17 : ο . x17)(x9 = x10∀ x17 : ο . x17)(x2 = x11∀ x17 : ο . x17)(x3 = x11∀ x17 : ο . x17)(x4 = x11∀ x17 : ο . x17)(x5 = x11∀ x17 : ο . x17)(x6 = x11∀ x17 : ο . x17)(x7 = x11∀ x17 : ο . x17)(x8 = x11∀ x17 : ο . x17)(x9 = x11∀ x17 : ο . x17)(x2 = x12∀ x17 : ο . x17)(x3 = x12∀ x17 : ο . x17)(x4 = x12∀ x17 : ο . x17)(x5 = x12∀ x17 : ο . x17)(x6 = x12∀ x17 : ο . x17)(x7 = x12∀ x17 : ο . x17)(x8 = x12∀ x17 : ο . x17)(x9 = x12∀ x17 : ο . x17)(x2 = x13∀ x17 : ο . x17)(x3 = x13∀ x17 : ο . x17)(x4 = x13∀ x17 : ο . x17)(x5 = x13∀ x17 : ο . x17)(x6 = x13∀ x17 : ο . x17)(x7 = x13∀ x17 : ο . x17)(x8 = x13∀ x17 : ο . x17)(x9 = x13∀ x17 : ο . x17)(x2 = x14∀ x17 : ο . x17)(x3 = x14∀ x17 : ο . x17)(x4 = x14∀ x17 : ο . x17)(x5 = x14∀ x17 : ο . x17)(x6 = x14∀ x17 : ο . x17)(x7 = x14∀ x17 : ο . x17)(x8 = x14∀ x17 : ο . x17)(x9 = x14∀ x17 : ο . x17)(x2 = x15∀ x17 : ο . x17)(x3 = x15∀ x17 : ο . x17)(x4 = x15∀ x17 : ο . x17)(x5 = x15∀ x17 : ο . x17)(x6 = x15∀ x17 : ο . x17)(x7 = x15∀ x17 : ο . x17)(x8 = x15∀ x17 : ο . x17)(x9 = x15∀ x17 : ο . x17)(x2 = x16∀ x17 : ο . x17)(x3 = x16∀ x17 : ο . x17)(x4 = x16∀ x17 : ο . x17)(x5 = x16∀ x17 : ο . x17)(x6 = x16∀ x17 : ο . x17)(x7 = x16∀ x17 : ο . x17)(x8 = x16∀ x17 : ο . x17)(x9 = x16∀ x17 : ο . x17)e643b.. x0 x2 x3 x4 x5 x6 x7 x8 x970d65.. (λ x17 x18 . not (x0 x17 x18)) x10 x11 x12 x13 x14 x15 x1686706.. x1 x035fb6.. x1 x0(not (x0 x2 x13)not (x0 x2 x14)not (x0 x2 x11)x0 x3 x12not (x0 x3 x11)False)(x0 x4 x10not (x0 x3 x10)False)(x0 x3 x10not (x0 x2 x10)False)(x0 x2 x14not (x0 x2 x11)False)(x0 x2 x13not (x0 x2 x11)False)(x0 x2 x12not (x0 x2 x11)False)False
...


previous assets