Search for blocks/addresses/...

Proofgold Address

address
PUNz5n8fdvFqwjU6yEL96EmdRMS8BxTzZez
total
0
mg
-
conjpub
-
current assets
3f198../831e1.. bday: 36386 doc published by PrCmT..
Known df_gzext__df_gzrep__df_gzpow__df_gzun__df_gzreg__df_gzinf__df_gzf__df_mcn__df_mvar__df_mty__df_mtc__df_mmax__df_mvt__df_mrex__df_mex__df_mdv__df_mvrs__df_mrsub : ∀ x0 : ο . (wceq cgze (co (cgol (co (co c2o c0 cgoe) (co c2o c1o cgoe) cgob) c2o) (co c0 c1o cgoq) cgoi)wceq cgzr (cmpt (λ x1 . cfv com cfmla) (λ x1 . co (cgol (cgox (cgol (co (cgol (cv x1) c1o) (co c2o c1o cgoq) cgoi) c2o) c1o) c3o) (cgol (cgol (co (co c2o c1o cgoe) (cgox (co (co c3o c0 cgoe) (cgol (cv x1) c1o) cgoa) c3o) cgob) c2o) c1o) cgoi))wceq cgzp (cgox (cgol (co (cgol (co (co c1o c2o cgoe) (co c1o c0 cgoe) cgob) c1o) (co c2o c1o cgoe) cgoi) c2o) c1o)wceq cgzu (cgox (cgol (co (cgox (co (co c2o c1o cgoe) (co c1o c0 cgoe) cgoa) c1o) (co c2o c1o cgoe) cgoi) c2o) c1o)wceq cgzg (co (cgox (co c1o c0 cgoe) c1o) (cgox (co (co c1o c0 cgoe) (cgol (co (co c2o c1o cgoe) (cgon (co c2o c0 cgoe)) cgoi) c2o) cgoa) c1o) cgoi)wceq cgzi (cgox (co (co c0 c1o cgoe) (cgol (co (co c2o c1o cgoe) (cgox (co (co c2o c0 cgoe) (co c0 c1o cgoe) cgoa) c0) cgoi) c2o) cgoa) c1o)wceq cgzf (cab (λ x1 . w3a (w3a (wtr (cv x1)) (wbr (cv x1) cgze cprv) (wbr (cv x1) cgzp cprv)) (w3a (wbr (cv x1) cgzu cprv) (wbr (cv x1) cgzg cprv) (wbr (cv x1) cgzi cprv)) (wral (λ x2 . wbr (cv x1) (cfv (cv x2) cgzr) cprv) (λ x2 . cfv com cfmla))))wceq cmcn (cslot c1)wceq cmvar (cslot c2)wceq cmty (cslot c3)wceq cmtc (cslot c4)wceq cmax (cslot c5)wceq cmvt (cmpt (λ x1 . cvv) (λ x1 . crn (cfv (cv x1) cmty)))wceq cmrex (cmpt (λ x1 . cvv) (λ x1 . cword (cun (cfv (cv x1) cmcn) (cfv (cv x1) cmvar))))wceq cmex (cmpt (λ x1 . cvv) (λ x1 . cxp (cfv (cv x1) cmtc) (cfv (cv x1) cmrex)))wceq cmdv (cmpt (λ x1 . cvv) (λ x1 . cdif (cxp (cfv (cv x1) cmvar) (cfv (cv x1) cmvar)) cid))wceq cmvrs (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) cmex) (λ x2 . cin (crn (cfv (cv x2) c2nd)) (cfv (cv x1) cmvar))))wceq cmrsub (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . co (cfv (cv x1) cmrex) (cfv (cv x1) cmvar) cpm) (λ x2 . cmpt (λ x3 . cfv (cv x1) cmrex) (λ x3 . co (cfv (cun (cfv (cv x1) cmcn) (cfv (cv x1) cmvar)) cfrmd) (ccom (cmpt (λ x4 . cun (cfv (cv x1) cmcn) (cfv (cv x1) cmvar)) (λ x4 . cif (wcel (cv x4) (cdm (cv x2))) (cfv (cv x4) (cv x2)) (cs1 (cv x4)))) (cv x3)) cgsu))))x0)x0
Theorem df_gzext : wceq cgze (co (cgol (co (co c2o c0 cgoe) (co c2o c1o cgoe) cgob) c2o) (co c0 c1o cgoq) cgoi) (proof)
Theorem df_gzrep : wceq cgzr (cmpt (λ x0 . cfv com cfmla) (λ x0 . co (cgol (cgox (cgol (co (cgol (cv x0) c1o) (co c2o c1o cgoq) cgoi) c2o) c1o) c3o) (cgol (cgol (co (co c2o c1o cgoe) (cgox (co (co c3o c0 cgoe) (cgol (cv x0) c1o) cgoa) c3o) cgob) c2o) c1o) cgoi)) (proof)
Theorem df_gzpow : wceq cgzp (cgox (cgol (co (cgol (co (co c1o c2o cgoe) (co c1o c0 cgoe) cgob) c1o) (co c2o c1o cgoe) cgoi) c2o) c1o) (proof)
Theorem df_gzun : wceq cgzu (cgox (cgol (co (cgox (co (co c2o c1o cgoe) (co c1o c0 cgoe) cgoa) c1o) (co c2o c1o cgoe) cgoi) c2o) c1o) (proof)
Theorem df_gzreg : wceq cgzg (co (cgox (co c1o c0 cgoe) c1o) (cgox (co (co c1o c0 cgoe) (cgol (co (co c2o c1o cgoe) (cgon (co c2o c0 cgoe)) cgoi) c2o) cgoa) c1o) cgoi) (proof)
Theorem df_gzinf : wceq cgzi (cgox (co (co c0 c1o cgoe) (cgol (co (co c2o c1o cgoe) (cgox (co (co c2o c0 cgoe) (co c0 c1o cgoe) cgoa) c0) cgoi) c2o) cgoa) c1o) (proof)
Theorem df_gzf : wceq cgzf (cab (λ x0 . w3a (w3a (wtr (cv x0)) (wbr (cv x0) cgze cprv) (wbr (cv x0) cgzp cprv)) (w3a (wbr (cv x0) cgzu cprv) (wbr (cv x0) cgzg cprv) (wbr (cv x0) cgzi cprv)) (wral (λ x1 . wbr (cv x0) (cfv (cv x1) cgzr) cprv) (λ x1 . cfv com cfmla)))) (proof)
Theorem df_mcn : wceq cmcn (cslot c1) (proof)
Theorem df_mvar : wceq cmvar (cslot c2) (proof)
Theorem df_mty : wceq cmty (cslot c3) (proof)
Theorem df_mtc : wceq cmtc (cslot c4) (proof)
Theorem df_mmax : wceq cmax (cslot c5) (proof)
Theorem df_mvt : wceq cmvt (cmpt (λ x0 . cvv) (λ x0 . crn (cfv (cv x0) cmty))) (proof)
Theorem df_mrex : wceq cmrex (cmpt (λ x0 . cvv) (λ x0 . cword (cun (cfv (cv x0) cmcn) (cfv (cv x0) cmvar)))) (proof)
Theorem df_mex : wceq cmex (cmpt (λ x0 . cvv) (λ x0 . cxp (cfv (cv x0) cmtc) (cfv (cv x0) cmrex))) (proof)
Theorem df_mdv : wceq cmdv (cmpt (λ x0 . cvv) (λ x0 . cdif (cxp (cfv (cv x0) cmvar) (cfv (cv x0) cmvar)) cid)) (proof)
Theorem df_mvrs : wceq cmvrs (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) cmex) (λ x1 . cin (crn (cfv (cv x1) c2nd)) (cfv (cv x0) cmvar)))) (proof)
Theorem df_mrsub : wceq cmrsub (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . co (cfv (cv x0) cmrex) (cfv (cv x0) cmvar) cpm) (λ x1 . cmpt (λ x2 . cfv (cv x0) cmrex) (λ x2 . co (cfv (cun (cfv (cv x0) cmcn) (cfv (cv x0) cmvar)) cfrmd) (ccom (cmpt (λ x3 . cun (cfv (cv x0) cmcn) (cfv (cv x0) cmvar)) (λ x3 . cif (wcel (cv x3) (cdm (cv x1))) (cfv (cv x3) (cv x1)) (cs1 (cv x3)))) (cv x2)) cgsu)))) (proof)

previous assets