current assets |
---|
fb350../d7729.. bday: 4945 doc published by Pr6Pc..Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4)) (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 : ο . (∀ x5 . and (x5 ∈ x0) (x2 x5 = x3) ⟶ x4) ⟶ x4)Known and3Iand3I : ∀ x0 x1 x2 : ο . x0 ⟶ x1 ⟶ x2 ⟶ and (and x0 x1) x2Theorem bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4) ⟶ (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 : ο . (∀ x5 . and (x5 ∈ x0) (x2 x5 = x3) ⟶ x4) ⟶ x4) ⟶ bij x0 x1 x2 (proof)Theorem bijEbijE : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2 ⟶ ∀ x3 : ο . ((∀ x4 . x4 ∈ x0 ⟶ x2 x4 ∈ x1) ⟶ (∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x2 x4 = x2 x5 ⟶ x4 = x5) ⟶ (∀ x4 . x4 ∈ x1 ⟶ ∀ x5 : ο . (∀ x6 . and (x6 ∈ x0) (x2 x6 = x4) ⟶ x5) ⟶ x5) ⟶ x3) ⟶ x3 (proof)Definition equipequip := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . bij x0 x1 x3 ⟶ x2) ⟶ x2Known bij_idbij_id : ∀ x0 . bij x0 x0 (λ x1 . x1)Theorem equip_refequip_ref : ∀ x0 . equip x0 x0 (proof)Param invinv : ι → (ι → ι) → ι → ιKnown bij_invbij_inv : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2 ⟶ bij x1 x0 (inv x0 x2)Theorem equip_symequip_sym : ∀ x0 x1 . equip x0 x1 ⟶ equip x1 x0 (proof)Known bij_compbij_comp : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι . bij x0 x1 x3 ⟶ bij x1 x2 x4 ⟶ bij x0 x2 (λ x5 . x4 (x3 x5))Theorem equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1 ⟶ equip x1 x2 ⟶ equip x0 x2 (proof)
|
|