Search for blocks/addresses/...

Proofgold Address

address
PUQ8quQVYRzfLB9R4YuEAbn6Nydwtp7fFSe
total
0
mg
-
conjpub
-
current assets
10fdc../0298a.. bday: 11511 doc published by PrEBh..
Param lamSigma : ι(ιι) → ι
Param ordsuccordsucc : ιι
Param If_iIf_i : οιιι
Param setsumsetsum : ιιι
Known pair_tuple_funpair_tuple_fun : setsum = λ x1 x2 . lam 2 (λ x3 . If_i (x3 = 0) x1 x2)
Known tupleI0tupleI0 : ∀ x0 x1 x2 . x2x0lam 2 (λ x3 . If_i (x3 = 0) 0 x2)lam 2 (λ x3 . If_i (x3 = 0) x0 x1)
Theorem a08f4.. : ∀ x0 x1 x2 . x2x0lam 2 (λ x3 . If_i (x3 = 0) 0 x2)setsum x0 x1 (proof)
Known tupleI1tupleI1 : ∀ x0 x1 x2 . x2x1lam 2 (λ x3 . If_i (x3 = 0) 1 x2)lam 2 (λ x3 . If_i (x3 = 0) x0 x1)
Theorem 40b22.. : ∀ x0 x1 x2 . x2x1lam 2 (λ x3 . If_i (x3 = 0) 1 x2)setsum x0 x1 (proof)
Param PiPi : ι(ιι) → ι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known Pi_cod_monPi_cod_mon : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3x2 x3)Pi x0 x1Pi x0 x2
Theorem 28e5a.. : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)Pi x0 x1 = Pi x0 x2 (proof)
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Param andand : οοο
Definition MetaCat_product_pproduct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x6 x4 x7)) (x1 x6 x5 x8)) (∀ x10 . x0 x10∀ x11 x12 . x1 x10 x4 x11x1 x10 x5 x12and (and (and (x1 x10 x6 (x9 x10 x11 x12)) (x3 x10 x6 x4 x7 (x9 x10 x11 x12) = x11)) (x3 x10 x6 x5 x8 (x9 x10 x11 x12) = x12)) (∀ x13 . x1 x10 x6 x13x3 x10 x6 x4 x7 x13 = x11x3 x10 x6 x5 x8 x13 = x12x13 = x9 x10 x11 x12))
Definition MetaCat_product_constr_pproduct_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 x9 . x0 x8x0 x9MetaCat_product_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9)
Definition MetaCat_exp_pexponent_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 x9 x10 x11 . λ x12 : ι → ι → ι . and (and (and (and (x0 x8) (x0 x9)) (x0 x10)) (x1 (x4 x10 x8) x9 x11)) (∀ x13 . x0 x13∀ x14 . x1 (x4 x13 x8) x9 x14and (and (x1 x13 x10 (x12 x13 x14)) (x3 (x4 x13 x8) (x4 x10 x8) x9 x11 (x7 x10 x8 (x4 x13 x8) (x3 (x4 x13 x8) x13 x10 (x12 x13 x14) (x5 x13 x8)) (x6 x13 x8)) = x14)) (∀ x15 . x1 x13 x10 x15x3 (x4 x13 x8) (x4 x10 x8) x9 x11 (x7 x10 x8 (x4 x13 x8) (x3 (x4 x13 x8) x13 x10 x15 (x5 x13 x8)) (x6 x13 x8)) = x14x15 = x12 x13 x14))
Definition MetaCat_exp_constr_pproduct_exponent_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 x9 : ι → ι → ι . λ x10 : ι → ι → ι → ι → ι . and (MetaCat_product_constr_p x0 x1 x2 x3 x4 x5 x6 x7) (∀ x11 x12 . x0 x11x0 x12MetaCat_exp_p x0 x1 x2 x3 x4 x5 x6 x7 x11 x12 (x8 x11 x12) (x9 x11 x12) (x10 x11 x12))
Definition HomSetSetHom := λ x0 x1 x2 . x2setexp x1 x0
Param lam_idlam_id : ιι
Param apap : ιιι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known tuple_2_setprodtuple_2_setprod : ∀ x0 x1 x2 . x2x0∀ x3 . x3x1lam 2 (λ x4 . If_i (x4 = 0) x2 x3)setprod x0 x1
Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known tuple_2_Sigmatuple_2_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0∀ x3 . x3x1 x2lam 2 (λ x4 . If_i (x4 = 0) x2 x3)lam x0 x1
Theorem 37ab0..MetaCatSet_product_exponent_gen_setprod_setexp : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x0 x2x0 (setprod x1 x2))(∀ x1 . x0 x1∀ x2 . x0 x2x0 (setexp x2 x1))MetaCat_exp_constr_p x0 HomSet lam_id (λ x1 x2 x3 . lam_comp x1) setprod (λ x1 x2 . lam (setprod x1 x2) (λ x3 . ap x3 0)) (λ x1 x2 . lam (setprod x1 x2) (λ x3 . ap x3 1)) (λ x1 x2 x3 x4 x5 . lam x3 (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (ap x4 x6) (ap x5 x6)))) (λ x1 x2 . setexp x2 x1) (λ x1 x2 . lam (setprod (setexp x2 x1) x1) (λ x3 . ap (ap x3 0) (ap x3 1))) (λ x1 x2 x3 x4 . lam x3 (λ x5 . lam x1 (λ x6 . ap x4 (lam 2 (λ x7 . If_i (x7 = 0) x5 x6))))) (proof)
Theorem 32b3d..MetaCatSet_product_exponent_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x0 x2x0 (setprod x1 x2))(∀ x1 . x0 x1∀ x2 . x0 x2x0 (setexp x2 x1))∀ x1 : ο . (∀ x2 : ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι . (∀ x9 : ο . (∀ x10 : ι → ι → ι . (∀ x11 : ο . (∀ x12 : ι → ι → ι . (∀ x13 : ο . (∀ x14 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p x0 HomSet lam_id (λ x15 x16 x17 . lam_comp x15) x2 x4 x6 x8 x10 x12 x14x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3)x1)x1 (proof)
Definition TrueTrue := ∀ x0 : ο . x0x0
Known TrueITrueI : True
Theorem 1810c..MetaCatSet_product_exponent : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι . (∀ x12 : ο . (∀ x13 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p (λ x14 . True) HomSet lam_id (λ x14 x15 x16 . lam_comp x14) x1 x3 x5 x7 x9 x11 x13x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param TransSetTransSet : ιο
Param ZF_closedZF_closed : ιο
Known 33118..ZF_setexp_closed : ∀ x0 . TransSet x0ZF_closed x0∀ x1 . x1x0∀ x2 . x2x0setexp x2 x1x0
Known UnivOf_TransSetUnivOf_TransSet : ∀ x0 . TransSet (prim6 x0)
Known UnivOf_ZF_closedUnivOf_ZF_closed : ∀ x0 . ZF_closed (prim6 x0)
Known ecfb5..ZF_setprod_closed : ∀ x0 . TransSet x0ZF_closed x0∀ x1 . x1x0∀ x2 . x2x0setprod x1 x2x0
Theorem 29786..MetaCatHFSet_product_exponent : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι . (∀ x12 : ο . (∀ x13 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p (λ x14 . x14prim6 0) HomSet lam_id (λ x14 x15 x16 . lam_comp x14) x1 x3 x5 x7 x9 x11 x13x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)

previous assets