Search for blocks/addresses/...

Proofgold Address

address
PUQwijaLVMZWj6NnGvYs5zTf4ow5witDGfP
total
0
mg
-
conjpub
-
current assets
86ecc../e2532.. bday: 24141 doc published by Pr4zB..
Param nat_pnat_p : ιο
Param SepSep : ι(ιο) → ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param SingSing : ιι
Param binunionbinunion : ιιι
Param equipequip : ιιο
Param binintersectbinintersect : ιιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param ordsuccordsucc : ιι
Definition u1 := 1
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known FalseEFalseE : False∀ x0 : ο . x0
Param atleastpatleastp : ιιο
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Param setsumsetsum : ιιι
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Param add_natadd_nat : ιιι
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known nat_0nat_0 : nat_p 0
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known nat_1nat_1 : nat_p 1
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known d778e.. : ∀ x0 x1 x2 x3 . equip x0 x2equip x1 x3(∀ x4 . x4x0nIn x4 x1)equip (binunion x0 x1) (setsum x2 x3)
Known 5169f..equip_Sing_1 : ∀ x0 . equip (Sing x0) u1
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2binintersect x0 x1and (x2x0) (x2x1)
Known SingISingI : ∀ x0 . x0Sing x0
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2x0x2x1x2binintersect x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known cfabd.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2x2DirGraphOutNeighbors x0 x1 x3
Known 6cd03.. : ∀ x0 x1 . x1x0Sing x1x0
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Theorem 9a487.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 x3 . nat_p x2∀ x4 x5 . x5DirGraphOutNeighbors x0 x1 x4∀ x6 x7 x8 . x6x0x7x0x8x0x7 = setminus (DirGraphOutNeighbors x0 x1 x5) (Sing x4)x8 = setminus {x10 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x4) (Sing x4))|equip (binintersect (DirGraphOutNeighbors x0 x1 x10) (DirGraphOutNeighbors x0 x1 x4)) x3} x7equip x6 x2(∀ x9 . x9x6x9 = x5∀ x10 : ο . x10)(∀ x9 . x9x6nIn x9 x7)(∀ x9 . x9x6nIn x9 x8)(∀ x9 . x9x6nIn x9 (DirGraphOutNeighbors x0 x1 x4))(∀ x9 . x9x6nIn x9 (DirGraphOutNeighbors x0 x1 x5))(∀ x9 . x9x6∀ x10 . x10x6(x9 = x10∀ x11 : ο . x11)∀ x11 . x11binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x10)x11x6)∀ x9 : ι → ι . (∀ x10 . x10x6x9 x10x7)(∀ x10 . x10x6x1 x10 (x9 x10))(∀ x10 . x10x7∀ x11 : ο . (∀ x12 . and (x12x6) (x9 x12 = x10)x11)x11)(∀ x10 . x10x8or (equip (binintersect (DirGraphOutNeighbors x0 x1 x10) (DirGraphOutNeighbors x0 x1 x5)) u1) (equip (binintersect (DirGraphOutNeighbors x0 x1 x10) (DirGraphOutNeighbors x0 x1 x5)) x3))equip {x10 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x5) (Sing x5))|equip (binintersect (DirGraphOutNeighbors x0 x1 x10) (DirGraphOutNeighbors x0 x1 x5)) u1} x2x8{x10 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x5) (Sing x5))|equip (binintersect (DirGraphOutNeighbors x0 x1 x10) (DirGraphOutNeighbors x0 x1 x5)) x3} (proof)
Param u3 : ι
Param u6 : ι
Theorem 18a4e.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))(∀ x2 . x2x0atleastp u6 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)))∀ x2 x3 . nat_p x2∀ x4 x5 . x5DirGraphOutNeighbors x0 x1 x4∀ x6 x7 x8 . x6x0x7x0x8x0x7 = setminus (DirGraphOutNeighbors x0 x1 x5) (Sing x4)x8 = setminus {x10 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x4) (Sing x4))|equip (binintersect (DirGraphOutNeighbors x0 x1 x10) (DirGraphOutNeighbors x0 x1 x4)) x3} x7equip x6 x2(∀ x9 . x9x6x9 = x5∀ x10 : ο . x10)(∀ x9 . x9x6nIn x9 x7)(∀ x9 . x9x6nIn x9 x8)(∀ x9 . x9x6nIn x9 (DirGraphOutNeighbors x0 x1 x4))(∀ x9 . x9x6nIn x9 (DirGraphOutNeighbors x0 x1 x5))(∀ x9 . x9x6∀ x10 . x10x6(x9 = x10∀ x11 : ο . x11)∀ x11 . x11binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x10)x11x6)∀ x9 : ι → ι . (∀ x10 . x10x6x9 x10x7)(∀ x10 . x10x6x1 x10 (x9 x10))(∀ x10 . x10x7∀ x11 : ο . (∀ x12 . and (x12x6) (x9 x12 = x10)x11)x11)(∀ x10 . x10x8or (equip (binintersect (DirGraphOutNeighbors x0 x1 x10) (DirGraphOutNeighbors x0 x1 x5)) u1) (equip (binintersect (DirGraphOutNeighbors x0 x1 x10) (DirGraphOutNeighbors x0 x1 x5)) x3))equip {x10 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x5) (Sing x5))|equip (binintersect (DirGraphOutNeighbors x0 x1 x10) (DirGraphOutNeighbors x0 x1 x5)) u1} x2x8{x10 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x5) (Sing x5))|equip (binintersect (DirGraphOutNeighbors x0 x1 x10) (DirGraphOutNeighbors x0 x1 x5)) x3} (proof)

previous assets