Search for blocks/addresses/...
Proofgold Address
address
PURFETeThQKhhUJjjfMDz4yH4hWTM7WdW1T
total
0
mg
-
conjpub
-
current assets
24794..
/
e8524..
bday:
2815
doc published by
PrGxv..
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
TransSet
:=
λ x0 .
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Param
91630..
:
ι
→
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Known
c8c18..
:
4a7ef..
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
fead7..
:
∀ x0 x1 .
prim1
x1
(
91630..
x0
)
⟶
x1
=
x0
Known
e7a4c..
:
∀ x0 .
prim1
x0
(
91630..
x0
)
Known
f1083..
:
prim1
4a7ef..
(
4ae4a..
4a7ef..
)
Theorem
76294..
:
not
(
TransSet
(
91630..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
prim1
x1
x0
⟶
TransSet
x1
)
Theorem
c2694..
:
not
(
ordinal
(
91630..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Param
0ac37..
:
ι
→
ι
→
ι
Definition
15418..
:=
λ x0 x1 .
0ac37..
x0
(
91630..
x1
)
Known
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
ordinal
x1
Known
287ca..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
x2
(
0ac37..
x0
x1
)
Theorem
e9d4c..
:
∀ x0 .
not
(
ordinal
(
15418..
x0
(
91630..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Theorem
04665..
:
∀ x0 x1 .
ordinal
x0
⟶
nIn
(
15418..
x1
(
91630..
(
4ae4a..
4a7ef..
)
)
)
x0
(proof)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
edd11..
:
∀ x0 x1 x2 .
prim1
x2
(
0ac37..
x0
x1
)
⟶
or
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
da962..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
x2
(
0ac37..
x0
x1
)
Theorem
fb3f3..
:
∀ x0 x1 .
ordinal
x0
⟶
15418..
x0
(
91630..
(
4ae4a..
4a7ef..
)
)
=
15418..
x1
(
91630..
(
4ae4a..
4a7ef..
)
)
⟶
Subq
x0
x1
(proof)
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Theorem
a4673..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
15418..
x0
(
91630..
(
4ae4a..
4a7ef..
)
)
=
15418..
x1
(
91630..
(
4ae4a..
4a7ef..
)
)
⟶
x0
=
x1
(proof)
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
48c17..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
prim1
(
15418..
x1
(
91630..
(
4ae4a..
4a7ef..
)
)
)
(
94f9e..
x0
(
λ x2 .
15418..
x2
(
91630..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
prim1
x1
x0
(proof)
Theorem
332b1..
:
∀ x0 x1 .
ordinal
x0
⟶
nIn
x0
(
94f9e..
x1
(
λ x2 .
15418..
x2
(
91630..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
472ec..
:=
λ x0 .
0ac37..
x0
(
94f9e..
x0
(
λ x1 .
15418..
x1
(
91630..
(
4ae4a..
4a7ef..
)
)
)
)
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Theorem
e52f8..
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
(
472ec..
x0
)
(
472ec..
x1
)
(proof)
Param
exactly1of2
:
ο
→
ο
→
ο
Definition
1beb9..
:=
λ x0 x1 .
and
(
Subq
x1
(
472ec..
x0
)
)
(
∀ x2 .
prim1
x2
x0
⟶
exactly1of2
(
prim1
(
15418..
x2
(
91630..
(
4ae4a..
4a7ef..
)
)
)
x1
)
(
prim1
x2
x1
)
)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Param
a4c2a..
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
Definition
09072..
:=
λ x0 .
λ x1 :
ι → ο
.
0ac37..
(
1216a..
x0
x1
)
(
a4c2a..
x0
(
λ x2 .
not
(
x1
x2
)
)
(
λ x2 .
15418..
x2
(
91630..
(
4ae4a..
4a7ef..
)
)
)
)
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Definition
PNoEq_
:=
λ x0 .
λ x1 x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
Known
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
ac5c1..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
x1
x2
Known
932b3..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
(
a4c2a..
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
prim1
x5
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Theorem
db375..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
PNoEq_
x0
(
λ x2 .
prim1
x2
(
09072..
x0
x1
)
)
x1
(proof)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
6982e..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
x1
x2
)
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
exactly1of2_I2
:
∀ x0 x1 : ο .
not
x0
⟶
x1
⟶
exactly1of2
x0
x1
Known
exactly1of2_I1
:
∀ x0 x1 : ο .
x0
⟶
not
x1
⟶
exactly1of2
x0
x1
Known
e951d..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
x1
x3
⟶
prim1
(
x2
x3
)
(
a4c2a..
x0
x1
x2
)
Theorem
c0a4f..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
1beb9..
x0
(
09072..
x0
x1
)
(proof)
Known
exactly1of2_E
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
not
x1
⟶
x2
)
⟶
(
not
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
cdf75..
:
∀ x0 x1 .
ordinal
x0
⟶
1beb9..
x0
x1
⟶
x1
=
09072..
x0
(
λ x3 .
prim1
x3
x1
)
(proof)
Definition
80242..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
ordinal
x2
)
(
1beb9..
x2
x0
)
⟶
x1
)
⟶
x1
Theorem
5258d..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
1beb9..
x0
x1
⟶
80242..
x1
(proof)
Definition
e4431..
:=
λ x0 .
prim0
(
λ x1 .
and
(
ordinal
x1
)
(
1beb9..
x1
x0
)
)
Known
exactly1of2_or
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
or
x0
x1
Theorem
7294e..
:
∀ x0 x1 x2 .
ordinal
x1
⟶
ordinal
x2
⟶
1beb9..
x1
x0
⟶
1beb9..
x2
x0
⟶
Subq
x1
x2
(proof)
Theorem
0b81c..
:
∀ x0 x1 x2 .
ordinal
x1
⟶
ordinal
x2
⟶
1beb9..
x1
x0
⟶
1beb9..
x2
x0
⟶
x1
=
x2
(proof)
Known
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
d8827..
:
∀ x0 .
80242..
x0
⟶
and
(
ordinal
(
e4431..
x0
)
)
(
1beb9..
(
e4431..
x0
)
x0
)
(proof)
Theorem
4c9ee..
:
∀ x0 .
80242..
x0
⟶
ordinal
(
e4431..
x0
)
(proof)
Theorem
b0eab..
:
∀ x0 .
80242..
x0
⟶
1beb9..
(
e4431..
x0
)
x0
(proof)
Theorem
028bc..
:
∀ x0 .
80242..
x0
⟶
x0
=
09072..
(
e4431..
x0
)
(
λ x2 .
prim1
x2
x0
)
(proof)
Theorem
be8b9..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 :
ι → ο
.
e4431..
(
09072..
x0
x1
)
=
x0
(proof)
Theorem
40c06..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
Subq
(
e4431..
x0
)
(
e4431..
x1
)
⟶
(
∀ x2 .
prim1
x2
(
e4431..
x0
)
⟶
iff
(
prim1
x2
x0
)
(
prim1
x2
x1
)
)
⟶
Subq
x0
x1
(proof)
Definition
SNoEq_
:=
λ x0 x1 x2 .
PNoEq_
x0
(
λ x3 .
prim1
x3
x1
)
(
λ x3 .
prim1
x3
x2
)
Theorem
SNoEq_I
:
∀ x0 x1 x2 .
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
prim1
x3
x1
)
(
prim1
x3
x2
)
)
⟶
SNoEq_
x0
x1
x2
(proof)
Theorem
SNoEq_E
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
iff
(
prim1
x3
x1
)
(
prim1
x3
x2
)
(proof)
Theorem
SNoEq_E1
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
x3
x1
⟶
prim1
x3
x2
(proof)
Theorem
SNoEq_E2
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
x3
x2
⟶
prim1
x3
x1
(proof)
Known
PNoEq_antimon_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
prim1
x3
x2
⟶
PNoEq_
x2
x0
x1
⟶
PNoEq_
x3
x0
x1
Theorem
SNoEq_antimon_
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
∀ x2 x3 .
SNoEq_
x0
x2
x3
⟶
SNoEq_
x1
x2
x3
(proof)
Known
Subq_ref
:
∀ x0 .
Subq
x0
x0
Known
iff_sym
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
iff
x1
x0
Theorem
2b8be..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
e4431..
x0
=
e4431..
x1
⟶
SNoEq_
(
e4431..
x0
)
x0
x1
⟶
x0
=
x1
(proof)
Param
40dde..
:
ι
→
(
ι
→
ο
) →
ι
→
(
ι
→
ο
) →
ο
Definition
099f3..
:=
λ x0 x1 .
40dde..
(
e4431..
x0
)
(
λ x2 .
prim1
x2
x0
)
(
e4431..
x1
)
(
λ x2 .
prim1
x2
x1
)
Definition
35b9b..
:=
λ x0 .
λ x1 :
ι → ο
.
λ x2 .
λ x3 :
ι → ο
.
or
(
40dde..
x0
x1
x2
x3
)
(
and
(
x0
=
x2
)
(
PNoEq_
x0
x1
x3
)
)
Definition
fe4bb..
:=
λ x0 x1 .
35b9b..
(
e4431..
x0
)
(
λ x2 .
prim1
x2
x0
)
(
e4431..
x1
)
(
λ x2 .
prim1
x2
x1
)
Known
8fc51..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
40dde..
x0
x2
x1
x3
⟶
35b9b..
x0
x2
x1
x3
Theorem
8dc73..
:
∀ x0 x1 .
099f3..
x0
x1
⟶
fe4bb..
x0
x1
(proof)
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
817af..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
fe4bb..
x0
x1
⟶
or
(
099f3..
x0
x1
)
(
x0
=
x1
)
(proof)
Known
PNoEq_ref_
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
x1
Theorem
SNoEq_ref_
:
∀ x0 x1 .
SNoEq_
x0
x1
x1
(proof)
Known
PNoEq_sym_
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoEq_
x0
x2
x1
Theorem
SNoEq_sym_
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
SNoEq_
x0
x2
x1
(proof)
Known
PNoEq_tra_
:
∀ x0 .
∀ x1 x2 x3 :
ι → ο
.
PNoEq_
x0
x1
x2
⟶
PNoEq_
x0
x2
x3
⟶
PNoEq_
x0
x1
x3
Theorem
SNoEq_tra_
:
∀ x0 x1 x2 x3 .
SNoEq_
x0
x1
x2
⟶
SNoEq_
x0
x2
x3
⟶
SNoEq_
x0
x1
x3
(proof)
Param
d3786..
:
ι
→
ι
→
ι
Definition
PNoLt_
:=
λ x0 .
λ x1 x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
and
(
and
(
PNoEq_
x4
x1
x2
)
(
not
(
x1
x4
)
)
)
(
x2
x4
)
)
⟶
x3
)
⟶
x3
Known
140e3..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
40dde..
x0
x2
x1
x3
⟶
∀ x4 : ο .
(
PNoLt_
(
d3786..
x0
x1
)
x2
x3
⟶
x4
)
⟶
(
prim1
x0
x1
⟶
PNoEq_
x0
x2
x3
⟶
x3
x0
⟶
x4
)
⟶
(
prim1
x1
x0
⟶
PNoEq_
x1
x2
x3
⟶
not
(
x2
x1
)
⟶
x4
)
⟶
x4
Known
PNoLt_E_
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
PNoLt_
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
PNoEq_
x4
x1
x2
⟶
not
(
x1
x4
)
⟶
x2
x4
⟶
x3
)
⟶
x3
Known
3eff2..
:
∀ x0 x1 x2 .
prim1
x2
(
d3786..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
27954..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
prim1
x1
x0
⟶
PNoEq_
x1
x2
x3
⟶
not
(
x2
x1
)
⟶
40dde..
x0
x2
x1
x3
Known
0f47f..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
prim1
x0
x1
⟶
PNoEq_
x0
x2
x3
⟶
x3
x0
⟶
40dde..
x0
x2
x1
x3
Theorem
36ff9..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
80242..
x3
⟶
prim1
(
e4431..
x3
)
(
d3786..
(
e4431..
x0
)
(
e4431..
x1
)
)
⟶
SNoEq_
(
e4431..
x3
)
x3
x0
⟶
SNoEq_
(
e4431..
x3
)
x3
x1
⟶
099f3..
x0
x3
⟶
099f3..
x3
x1
⟶
nIn
(
e4431..
x3
)
x0
⟶
prim1
(
e4431..
x3
)
x1
⟶
x2
)
⟶
(
prim1
(
e4431..
x0
)
(
e4431..
x1
)
⟶
SNoEq_
(
e4431..
x0
)
x0
x1
⟶
prim1
(
e4431..
x0
)
x1
⟶
x2
)
⟶
(
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
SNoEq_
(
e4431..
x1
)
x0
x1
⟶
nIn
(
e4431..
x1
)
x0
⟶
x2
)
⟶
x2
(proof)
Theorem
151ed..
:
∀ x0 x1 .
prim1
(
e4431..
x0
)
(
e4431..
x1
)
⟶
SNoEq_
(
e4431..
x0
)
x0
x1
⟶
prim1
(
e4431..
x0
)
x1
⟶
099f3..
x0
x1
(proof)
Theorem
20dcf..
:
∀ x0 x1 .
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
SNoEq_
(
e4431..
x1
)
x0
x1
⟶
nIn
(
e4431..
x1
)
x0
⟶
099f3..
x0
x1
(proof)
Known
7de10..
:
∀ x0 .
∀ x1 :
ι → ο
.
not
(
40dde..
x0
x1
x0
x1
)
Theorem
c47c0..
:
∀ x0 .
not
(
099f3..
x0
x0
)
(proof)
Known
6ace3..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
40dde..
x0
x2
x1
x3
)
(
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
)
)
(
40dde..
x1
x3
x0
x2
)
Known
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
Known
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
Known
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
Theorem
41905..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
or
(
or
(
099f3..
x0
x1
)
(
x0
=
x1
)
)
(
099f3..
x1
x0
)
(proof)
Known
24a9c..
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
40dde..
x0
x3
x1
x4
⟶
40dde..
x1
x4
x2
x5
⟶
40dde..
x0
x3
x2
x5
Theorem
c7cc7..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x1
⟶
099f3..
x1
x2
⟶
099f3..
x0
x2
(proof)
Known
fb736..
:
∀ x0 .
∀ x1 :
ι → ο
.
35b9b..
x0
x1
x0
x1
Theorem
4c8cc..
:
∀ x0 .
fe4bb..
x0
x0
(proof)
Known
cd912..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 :
ι → ο
.
35b9b..
x0
x2
x1
x3
⟶
35b9b..
x1
x3
x0
x2
⟶
and
(
x0
=
x1
)
(
PNoEq_
x0
x2
x3
)
Theorem
1a766..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
fe4bb..
x0
x1
⟶
fe4bb..
x1
x0
⟶
x0
=
x1
(proof)
Known
146ff..
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
40dde..
x0
x3
x1
x4
⟶
35b9b..
x1
x4
x2
x5
⟶
40dde..
x0
x3
x2
x5
Theorem
c5dec..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x1
⟶
fe4bb..
x1
x2
⟶
099f3..
x0
x2
(proof)
Known
9652d..
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
35b9b..
x0
x3
x1
x4
⟶
40dde..
x1
x4
x2
x5
⟶
40dde..
x0
x3
x2
x5
Theorem
45d06..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
fe4bb..
x0
x1
⟶
099f3..
x1
x2
⟶
099f3..
x0
x2
(proof)
Known
d1711..
:
∀ x0 x1 x2 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
x2
⟶
∀ x3 x4 x5 :
ι → ο
.
35b9b..
x0
x3
x1
x4
⟶
35b9b..
x1
x4
x2
x5
⟶
35b9b..
x0
x3
x2
x5
Theorem
9787a..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
fe4bb..
x0
x1
⟶
fe4bb..
x1
x2
⟶
fe4bb..
x0
x2
(proof)
Theorem
027ee..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
or
(
099f3..
x0
x1
)
(
fe4bb..
x1
x0
)
(proof)
Known
1f4e8..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
PNoEq_
x0
x2
x3
⟶
40dde..
x0
x3
x1
x4
⟶
40dde..
x0
x2
x1
x4
Known
43fd7..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 x3 x4 :
ι → ο
.
40dde..
x0
x2
x1
x3
⟶
PNoEq_
x1
x3
x4
⟶
40dde..
x0
x2
x1
x4
Theorem
0b036..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
099f3..
(
09072..
x0
x2
)
(
09072..
x1
x3
)
⟶
40dde..
x0
x2
x1
x3
(proof)
Theorem
2f7d9..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
ordinal
x0
⟶
ordinal
x1
⟶
40dde..
x0
x2
x1
x3
⟶
099f3..
(
09072..
x0
x2
)
(
09072..
x1
x3
)
(proof)
Param
7b9f3..
:
(
ι
→
(
ι
→
ο
) →
ο
) →
(
ι
→
(
ι
→
ο
) →
ο
) →
ι
Param
ce2d5..
:
(
ι
→
(
ι
→
ο
) →
ο
) →
(
ι
→
(
ι
→
ο
) →
ο
) →
ι
→
ο
Definition
02a50..
:=
λ x0 x1 .
09072..
(
7b9f3..
(
λ x2 .
λ x3 :
ι → ο
.
and
(
ordinal
x2
)
(
prim1
(
09072..
x2
x3
)
x0
)
)
(
λ x2 .
λ x3 :
ι → ο
.
and
(
ordinal
x2
)
(
prim1
(
09072..
x2
x3
)
x1
)
)
)
(
ce2d5..
(
λ x2 .
λ x3 :
ι → ο
.
and
(
ordinal
x2
)
(
prim1
(
09072..
x2
x3
)
x0
)
)
(
λ x2 .
λ x3 :
ι → ο
.
and
(
ordinal
x2
)
(
prim1
(
09072..
x2
x3
)
x1
)
)
)
Definition
02b90..
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
prim1
x2
x0
⟶
80242..
x2
)
(
∀ x2 .
prim1
x2
x1
⟶
80242..
x2
)
)
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
Param
a842e..
:
ι
→
(
ι
→
ι
) →
ι
Definition
ed32f..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
x0
x2
x3
⟶
∀ x4 .
ordinal
x4
⟶
∀ x5 :
ι → ο
.
x1
x4
x5
⟶
40dde..
x2
x3
x4
x5
Definition
PNo_lenbdd
:=
λ x0 .
λ x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
∀ x3 :
ι → ο
.
x1
x2
x3
⟶
prim1
x2
x0
Definition
cae4c..
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 .
ordinal
x3
⟶
∀ x4 :
ι → ο
.
x0
x3
x4
⟶
40dde..
x3
x4
x1
x2
Definition
bc2b0..
:=
λ x0 :
ι →
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 .
ordinal
x3
⟶
∀ x4 :
ι → ο
.
x0
x3
x4
⟶
40dde..
x1
x2
x3
x4
Definition
47618..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
cae4c..
x0
x2
x3
)
(
bc2b0..
x1
x2
x3
)
Definition
1a487..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
and
(
ordinal
x2
)
(
47618..
x0
x1
x2
x3
)
)
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 :
ι → ο
.
not
(
47618..
x0
x1
x4
x5
)
)
Known
f06ce..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
1a487..
x0
x1
(
7b9f3..
x0
x1
)
(
ce2d5..
x0
x1
)
Known
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Known
PNoLt_trichotomy_or_
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
ordinal
x2
⟶
or
(
or
(
PNoLt_
x2
x0
x1
)
(
PNoEq_
x2
x0
x1
)
)
(
PNoLt_
x2
x1
x0
)
Param
8033b..
:
(
ι
→
(
ι
→
ο
) →
ο
) →
(
ι
→
(
ι
→
ο
) →
ο
) →
ι
→
(
ι
→
ο
) →
ο
Definition
a59df..
:=
λ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
λ x2 .
λ x3 :
ι → ο
.
and
(
8033b..
x0
x1
(
4ae4a..
x2
)
(
λ x4 .
and
(
x3
x4
)
(
x4
=
x2
⟶
∀ x5 : ο .
x5
)
)
)
(
8033b..
x0
x1
(
4ae4a..
x2
)
(
λ x4 .
or
(
x3
x4
)
(
x4
=
x2
)
)
)
Known
61193..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 :
ι → ο
.
a59df..
x0
x1
x2
x3
⟶
47618..
x0
x1
x2
x3
Known
e4d06..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 x4 :
ι → ο
.
PNoEq_
x2
x3
x4
⟶
8033b..
x0
x1
x2
x3
⟶
8033b..
x0
x1
x2
x4
Known
958ef..
:
∀ x0 x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
or
(
prim1
x1
x0
)
(
x1
=
x0
)
Known
iff_trans
:
∀ x0 x1 x2 : ο .
iff
x0
x1
⟶
iff
x1
x2
⟶
iff
x0
x2
Known
PNo_extend0_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
(
λ x2 .
and
(
x1
x2
)
(
x2
=
x0
⟶
∀ x3 : ο .
x3
)
)
Known
45f48..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
∀ x2 .
ordinal
x2
⟶
∀ x3 .
prim1
x3
(
4ae4a..
x2
)
⟶
∀ x4 :
ι → ο
.
47618..
x0
x1
x2
x4
⟶
8033b..
x0
x1
x3
x4
Known
09068..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
prim1
(
4ae4a..
x1
)
(
4ae4a..
x0
)
Known
PNo_extend1_eq
:
∀ x0 .
∀ x1 :
ι → ο
.
PNoEq_
x0
x1
(
λ x2 .
or
(
x1
x2
)
(
x2
=
x0
)
)
Known
b72a3..
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
4ae4a..
x0
)
Known
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
prim1
x0
x1
)
(
Subq
x1
x0
)
Known
00673..
:
∀ x0 x1 :
ι →
(
ι → ο
)
→ ο
.
ed32f..
x0
x1
⟶
∀ x2 .
ordinal
x2
⟶
PNo_lenbdd
x2
x0
⟶
PNo_lenbdd
x2
x1
⟶
prim1
(
7b9f3..
x0
x1
)
(
4ae4a..
x2
)
Known
2236b..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
prim1
x2
x0
⟶
prim1
x3
(
x1
x2
)
⟶
prim1
x3
(
a842e..
x0
x1
)
Known
5faa3..
:
∀ x0 .
prim1
x0
(
4ae4a..
x0
)
Known
ordinal_linear
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
Subq
x0
x1
)
(
Subq
x1
x0
)
Known
02255..
:
∀ x0 x1 .
Subq
x0
x1
=
(
0ac37..
x0
x1
=
x1
)
Known
47e6b..
:
∀ x0 x1 .
0ac37..
x0
x1
=
0ac37..
x1
x0
Known
d5fb2..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
ordinal
(
x1
x2
)
)
⟶
ordinal
(
a842e..
x0
x1
)
Theorem
9b3fd..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
and
(
and
(
and
(
and
(
80242..
(
02a50..
x0
x1
)
)
(
prim1
(
e4431..
(
02a50..
x0
x1
)
)
(
4ae4a..
(
0ac37..
(
a842e..
x0
(
λ x2 .
4ae4a..
(
e4431..
x2
)
)
)
(
a842e..
x1
(
λ x2 .
4ae4a..
(
e4431..
x2
)
)
)
)
)
)
)
(
∀ x2 .
prim1
x2
x0
⟶
099f3..
x2
(
02a50..
x0
x1
)
)
)
(
∀ x2 .
prim1
x2
x1
⟶
099f3..
(
02a50..
x0
x1
)
x2
)
)
(
∀ x2 .
80242..
x2
⟶
(
∀ x3 .
prim1
x3
x0
⟶
099f3..
x3
x2
)
⟶
(
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
⟶
and
(
Subq
(
e4431..
(
02a50..
x0
x1
)
)
(
e4431..
x2
)
)
(
SNoEq_
(
e4431..
(
02a50..
x0
x1
)
)
(
02a50..
x0
x1
)
x2
)
)
(proof)
Param
e5b72..
:
ι
→
ι
Definition
56ded..
:=
λ x0 .
1216a..
(
e5b72..
(
472ec..
x0
)
)
(
λ x1 .
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x3
x0
)
(
1beb9..
x3
x1
)
⟶
x2
)
⟶
x2
)
Theorem
1b1bf..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
(
56ded..
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x3
x0
)
(
1beb9..
x3
x1
)
⟶
x2
)
⟶
x2
(proof)
Known
3daee..
:
∀ x0 x1 .
Subq
x1
x0
⟶
prim1
x1
(
e5b72..
x0
)
Known
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
Theorem
ade9f..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
prim1
x2
x0
⟶
1beb9..
x2
x1
⟶
prim1
x1
(
56ded..
x0
)
(proof)
Theorem
b50ea..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
prim1
(
e4431..
x0
)
(
e4431..
x1
)
⟶
prim1
x0
(
56ded..
(
e4431..
x1
)
)
(proof)
Theorem
d7a3e..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
Subq
x0
x1
⟶
Subq
(
56ded..
x0
)
(
56ded..
x1
)
(proof)
Theorem
27bae..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
1beb9..
x0
x1
⟶
e4431..
x1
=
x0
(proof)
Theorem
bfaa9..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
(
56ded..
x0
)
⟶
∀ x2 : ο .
(
prim1
(
e4431..
x1
)
x0
⟶
ordinal
(
e4431..
x1
)
⟶
80242..
x1
⟶
1beb9..
(
e4431..
x1
)
x1
⟶
x2
)
⟶
x2
(proof)
Known
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
1eaea..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
56ded..
(
e4431..
x0
)
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
(proof)
Theorem
98928..
:
∀ x0 .
80242..
x0
⟶
prim1
x0
(
56ded..
(
4ae4a..
(
e4431..
x0
)
)
)
(proof)
Definition
23e07..
:=
λ x0 .
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x1 .
099f3..
x1
x0
)
Definition
5246e..
:=
λ x0 .
1216a..
(
56ded..
(
e4431..
x0
)
)
(
099f3..
x0
)
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
d0a1f..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
prim1
x2
x0
Theorem
23b01..
:
∀ x0 .
80242..
x0
⟶
02b90..
(
23e07..
x0
)
(
5246e..
x0
)
(proof)
Theorem
cbec9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
x2
)
⟶
x2
(proof)
Theorem
e76d1..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x0
x1
⟶
x2
)
⟶
x2
(proof)
Theorem
63df9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
prim1
x1
(
56ded..
(
e4431..
x0
)
)
(proof)
Theorem
54843..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
prim1
x1
(
56ded..
(
e4431..
x0
)
)
(proof)
Theorem
f5194..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
prim1
x1
(
23e07..
x0
)
(proof)
Theorem
18a76..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x0
x1
⟶
prim1
x1
(
5246e..
x0
)
(proof)
Known
ordinal_trichotomy_or
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
or
(
prim1
x0
x1
)
(
x0
=
x1
)
)
(
prim1
x1
x0
)
Theorem
f6a2d..
:
∀ x0 .
80242..
x0
⟶
x0
=
02a50..
(
23e07..
x0
)
(
5246e..
x0
)
(proof)
Theorem
5a5d4..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
80242..
(
02a50..
x0
x1
)
(proof)
Theorem
0888b..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
099f3..
x2
(
02a50..
x0
x1
)
(proof)
Theorem
9c8cc..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
prim1
x2
x1
⟶
099f3..
(
02a50..
x0
x1
)
x2
(proof)
Theorem
c1313..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
80242..
x2
⟶
(
∀ x3 .
prim1
x3
x0
⟶
099f3..
x3
x2
)
⟶
(
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
⟶
and
(
Subq
(
e4431..
(
02a50..
x0
x1
)
)
(
e4431..
x2
)
)
(
SNoEq_
(
e4431..
(
02a50..
x0
x1
)
)
(
02a50..
x0
x1
)
x2
)
(proof)
Known
a5fe0..
:
∀ x0 x1 x2 .
prim1
x2
(
d3786..
x0
x1
)
⟶
prim1
x2
x1
Theorem
6ec49..
:
∀ x0 x1 x2 x3 .
02b90..
x0
x1
⟶
02b90..
x2
x3
⟶
(
∀ x4 .
prim1
x4
x0
⟶
099f3..
x4
(
02a50..
x2
x3
)
)
⟶
(
∀ x4 .
prim1
x4
x3
⟶
099f3..
(
02a50..
x0
x1
)
x4
)
⟶
fe4bb..
(
02a50..
x0
x1
)
(
02a50..
x2
x3
)
(proof)
Theorem
22361..
:
∀ x0 x1 x2 x3 .
02b90..
x0
x1
⟶
02b90..
x2
x3
⟶
(
∀ x4 .
prim1
x4
x0
⟶
099f3..
x4
(
02a50..
x2
x3
)
)
⟶
(
∀ x4 .
prim1
x4
x1
⟶
099f3..
(
02a50..
x2
x3
)
x4
)
⟶
(
∀ x4 .
prim1
x4
x2
⟶
099f3..
x4
(
02a50..
x0
x1
)
)
⟶
(
∀ x4 .
prim1
x4
x3
⟶
099f3..
(
02a50..
x0
x1
)
x4
)
⟶
02a50..
x0
x1
=
02a50..
x2
x3
(proof)
Theorem
5b4d8..
:
∀ x0 .
ordinal
x0
⟶
1beb9..
x0
x0
(proof)
Definition
7cb9a..
:=
λ x0 .
09072..
(
4ae4a..
(
e4431..
x0
)
)
(
λ x1 .
and
(
prim1
x1
x0
)
(
x1
=
e4431..
x0
⟶
∀ x2 : ο .
x2
)
)
Definition
45abd..
:=
λ x0 .
09072..
(
4ae4a..
(
e4431..
x0
)
)
(
λ x1 .
or
(
prim1
x1
x0
)
(
x1
=
e4431..
x0
)
)
Theorem
2228f..
:
∀ x0 .
80242..
x0
⟶
1beb9..
(
4ae4a..
(
e4431..
x0
)
)
(
7cb9a..
x0
)
(proof)
Theorem
22184..
:
∀ x0 .
80242..
x0
⟶
1beb9..
(
4ae4a..
(
e4431..
x0
)
)
(
45abd..
x0
)
(proof)
Theorem
ec0f8..
:
∀ x0 .
80242..
x0
⟶
80242..
(
7cb9a..
x0
)
(proof)
Theorem
6a87c..
:
∀ x0 .
80242..
x0
⟶
80242..
(
45abd..
x0
)
(proof)
Theorem
8e40c..
:
∀ x0 .
80242..
x0
⟶
e4431..
(
7cb9a..
x0
)
=
4ae4a..
(
e4431..
x0
)
(proof)
Theorem
80851..
:
∀ x0 .
80242..
x0
⟶
e4431..
(
45abd..
x0
)
=
4ae4a..
(
e4431..
x0
)
(proof)
Theorem
e3722..
:
∀ x0 .
80242..
x0
⟶
nIn
(
e4431..
x0
)
(
7cb9a..
x0
)
(proof)
Theorem
35186..
:
∀ x0 .
80242..
x0
⟶
prim1
(
e4431..
x0
)
(
45abd..
x0
)
(proof)
Theorem
f3f53..
:
∀ x0 .
80242..
x0
⟶
SNoEq_
(
e4431..
x0
)
(
7cb9a..
x0
)
x0
(proof)
Theorem
aa41a..
:
∀ x0 .
80242..
x0
⟶
SNoEq_
(
e4431..
x0
)
(
45abd..
x0
)
x0
(proof)
Theorem
e3ccf..
:
∀ x0 .
ordinal
x0
⟶
80242..
x0
(proof)
Theorem
aab4f..
:
∀ x0 .
ordinal
x0
⟶
e4431..
x0
=
x0
(proof)
Known
695d8..
:
∀ x0 x1 x2 .
prim1
x2
(
d3786..
x0
x1
)
⟶
prim1
x2
x0
Known
bba3d..
:
∀ x0 x1 .
prim1
x0
x1
⟶
nIn
x1
x0
Theorem
c0742..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
x0
⟶
099f3..
x1
x0
(proof)
Theorem
44eea..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
099f3..
x1
x0
(proof)
Known
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
ordinal_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ordinal
x1
⟶
x0
x1
Theorem
09af0..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
4ae4a..
x0
)
⟶
fe4bb..
x1
x0
(proof)
Known
c79db..
:
∀ x0 .
Subq
x0
(
4ae4a..
x0
)
Theorem
f1fea..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
Subq
x0
x1
⟶
fe4bb..
x0
x1
(proof)
Theorem
75c45..
:
∀ x0 .
80242..
x0
⟶
∀ x1 : ο .
(
∀ x2 x3 .
02b90..
x2
x3
⟶
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
e4431..
x4
)
(
e4431..
x0
)
)
⟶
(
∀ x4 .
prim1
x4
x3
⟶
prim1
(
e4431..
x4
)
(
e4431..
x0
)
)
⟶
x0
=
02a50..
x2
x3
⟶
x1
)
⟶
x1
(proof)
Theorem
cfea1..
:
∀ x0 :
ι → ο
.
(
∀ x1 x2 .
02b90..
x1
x2
⟶
(
∀ x3 .
prim1
x3
x1
⟶
x0
x3
)
⟶
(
∀ x3 .
prim1
x3
x2
⟶
x0
x3
)
⟶
x0
(
02a50..
x1
x2
)
)
⟶
∀ x1 .
80242..
x1
⟶
x0
x1
(proof)
previous assets