current assets |
---|
2eb9f../6c460.. bday: 4933 doc published by Pr6Pc..Param lamSigma : ι → (ι → ι) → ιParam ordsuccordsucc : ι → ιParam If_iIf_i : ο → ι → ι → ιParam encode_bencode_b : ι → CT2 ιDefinition pack_b_b_b_e := λ x0 . λ x1 x2 x3 : ι → ι → ι . λ x4 . lam 5 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) (encode_b x0 x1) (If_i (x5 = 2) (encode_b x0 x2) (If_i (x5 = 3) (encode_b x0 x3) x4))))Param apap : ι → ι → ιKnown tuple_5_0_eqtuple_5_0_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 0 = x0Theorem pack_b_b_b_e_0_eq : ∀ x0 x1 . ∀ x2 x3 x4 : ι → ι → ι . ∀ x5 . x0 = pack_b_b_b_e x1 x2 x3 x4 x5 ⟶ x1 = ap x0 0 (proof)Theorem pack_b_b_b_e_0_eq2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . x0 = ap (pack_b_b_b_e x0 x1 x2 x3 x4) 0 (proof)Param decode_bdecode_b : ι → ι → ι → ιKnown tuple_5_1_eqtuple_5_1_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 1 = x1Known decode_encode_bdecode_encode_b : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ decode_b (encode_b x0 x1) x2 x3 = x1 x2 x3Theorem pack_b_b_b_e_1_eq : ∀ x0 x1 . ∀ x2 x3 x4 : ι → ι → ι . ∀ x5 . x0 = pack_b_b_b_e x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = decode_b (ap x0 1) x6 x7 (proof)Theorem pack_b_b_b_e_1_eq2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 x5 x6 = decode_b (ap (pack_b_b_b_e x0 x1 x2 x3 x4) 1) x5 x6 (proof)Known tuple_5_2_eqtuple_5_2_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 2 = x2Theorem pack_b_b_b_e_2_eq : ∀ x0 x1 . ∀ x2 x3 x4 : ι → ι → ι . ∀ x5 . x0 = pack_b_b_b_e x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x3 x6 x7 = decode_b (ap x0 2) x6 x7 (proof)Theorem pack_b_b_b_e_2_eq2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x2 x5 x6 = decode_b (ap (pack_b_b_b_e x0 x1 x2 x3 x4) 2) x5 x6 (proof)Known tuple_5_3_eqtuple_5_3_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 3 = x3Theorem pack_b_b_b_e_3_eq : ∀ x0 x1 . ∀ x2 x3 x4 : ι → ι → ι . ∀ x5 . x0 = pack_b_b_b_e x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x4 x6 x7 = decode_b (ap x0 3) x6 x7 (proof)Theorem pack_b_b_b_e_3_eq2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 = decode_b (ap (pack_b_b_b_e x0 x1 x2 x3 x4) 3) x5 x6 (proof)Known tuple_5_4_eqtuple_5_4_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 4 = x4Theorem pack_b_b_b_e_4_eq : ∀ x0 x1 . ∀ x2 x3 x4 : ι → ι → ι . ∀ x5 . x0 = pack_b_b_b_e x1 x2 x3 x4 x5 ⟶ x5 = ap x0 4 (proof)Theorem pack_b_b_b_e_4_eq2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . x4 = ap (pack_b_b_b_e x0 x1 x2 x3 x4) 4 (proof)Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ x4 ⟶ and (and (and (and x0 x1) x2) x3) x4Theorem pack_b_b_b_e_inj : ∀ x0 x1 . ∀ x2 x3 x4 x5 x6 x7 : ι → ι → ι . ∀ x8 x9 . pack_b_b_b_e x0 x2 x4 x6 x8 = pack_b_b_b_e x1 x3 x5 x7 x9 ⟶ and (and (and (and (x0 = x1) (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x2 x10 x11 = x3 x10 x11)) (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x4 x10 x11 = x5 x10 x11)) (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x6 x10 x11 = x7 x10 x11)) (x8 = x9) (proof)Known encode_b_extencode_b_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x1 x3 x4 = x2 x3 x4) ⟶ encode_b x0 x1 = encode_b x0 x2Theorem pack_b_b_b_e_ext : ∀ x0 . ∀ x1 x2 x3 x4 x5 x6 : ι → ι → ι . ∀ x7 . (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x1 x8 x9 = x2 x8 x9) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x3 x8 x9 = x4 x8 x9) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x5 x8 x9 = x6 x8 x9) ⟶ pack_b_b_b_e x0 x1 x3 x5 x7 = pack_b_b_b_e x0 x2 x4 x6 x7 (proof)Definition struct_b_b_b_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ ∀ x4 : ι → ι → ι . (∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ x4 x5 x6 ∈ x2) ⟶ ∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x2 ⟶ ∀ x7 . x7 ∈ x2 ⟶ x5 x6 x7 ∈ x2) ⟶ ∀ x6 . x6 ∈ x2 ⟶ x1 (pack_b_b_b_e x2 x3 x4 x5 x6)) ⟶ x1 x0Theorem pack_struct_b_b_b_e_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 x4 ∈ x0) ⟶ ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 x4 x5 ∈ x0) ⟶ ∀ x4 . x4 ∈ x0 ⟶ struct_b_b_b_e (pack_b_b_b_e x0 x1 x2 x3 x4) (proof)Theorem pack_struct_b_b_b_e_E1 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . struct_b_b_b_e (pack_b_b_b_e x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 x5 x6 ∈ x0 (proof)Theorem pack_struct_b_b_b_e_E2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . struct_b_b_b_e (pack_b_b_b_e x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x2 x5 x6 ∈ x0 (proof)Theorem pack_struct_b_b_b_e_E3 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . struct_b_b_b_e (pack_b_b_b_e x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 ∈ x0 (proof)Theorem pack_struct_b_b_b_e_E4 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . struct_b_b_b_e (pack_b_b_b_e x0 x1 x2 x3 x4) ⟶ x4 ∈ x0 (proof)Theorem struct_b_b_b_e_eta : ∀ x0 . struct_b_b_b_e x0 ⟶ x0 = pack_b_b_b_e (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_b (ap x0 3)) (ap x0 4) (proof)Definition unpack_b_b_b_e_i := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → ι → ι . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_b (ap x0 3)) (ap x0 4)Theorem unpack_b_b_b_e_i_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → ι → ι . ∀ x1 . ∀ x2 x3 x4 : ι → ι → ι . ∀ x5 . (∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x2 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x3 x8 x9 = x7 x8 x9) ⟶ ∀ x8 : ι → ι → ι . (∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ x4 x9 x10 = x8 x9 x10) ⟶ x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5) ⟶ unpack_b_b_b_e_i (pack_b_b_b_e x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)Definition unpack_b_b_b_e_o := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → ι → ο . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_b (ap x0 3)) (ap x0 4)Theorem unpack_b_b_b_e_o_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → ι → ο . ∀ x1 . ∀ x2 x3 x4 : ι → ι → ι . ∀ x5 . (∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x2 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x3 x8 x9 = x7 x8 x9) ⟶ ∀ x8 : ι → ι → ι . (∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ x4 x9 x10 = x8 x9 x10) ⟶ x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5) ⟶ unpack_b_b_b_e_o (pack_b_b_b_e x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)Definition pack_b_b_u_u := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 x4 : ι → ι . lam 5 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) (encode_b x0 x1) (If_i (x5 = 2) (encode_b x0 x2) (If_i (x5 = 3) (lam x0 x3) (lam x0 x4)))))Theorem pack_b_b_u_u_0_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . x0 = pack_b_b_u_u x1 x2 x3 x4 x5 ⟶ x1 = ap x0 0 (proof)Theorem pack_b_b_u_u_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . x0 = ap (pack_b_b_u_u x0 x1 x2 x3 x4) 0 (proof)Theorem pack_b_b_u_u_1_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . x0 = pack_b_b_u_u x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = decode_b (ap x0 1) x6 x7 (proof)Theorem pack_b_b_u_u_1_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 x5 x6 = decode_b (ap (pack_b_b_u_u x0 x1 x2 x3 x4) 1) x5 x6 (proof)Theorem pack_b_b_u_u_2_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . x0 = pack_b_b_u_u x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x3 x6 x7 = decode_b (ap x0 2) x6 x7 (proof)Theorem pack_b_b_u_u_2_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x2 x5 x6 = decode_b (ap (pack_b_b_u_u x0 x1 x2 x3 x4) 2) x5 x6 (proof)Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ x0 ⟶ ap (lam x0 x1) x2 = x1 x2Theorem pack_b_b_u_u_3_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . x0 = pack_b_b_u_u x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x4 x6 = ap (ap x0 3) x6 (proof)Theorem pack_b_b_u_u_3_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 . x5 ∈ x0 ⟶ x3 x5 = ap (ap (pack_b_b_u_u x0 x1 x2 x3 x4) 3) x5 (proof)Theorem pack_b_b_u_u_4_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . x0 = pack_b_b_u_u x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x5 x6 = ap (ap x0 4) x6 (proof)Theorem pack_b_b_u_u_4_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 . x5 ∈ x0 ⟶ x4 x5 = ap (ap (pack_b_b_u_u x0 x1 x2 x3 x4) 4) x5 (proof)Theorem pack_b_b_u_u_inj : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 x8 x9 : ι → ι . pack_b_b_u_u x0 x2 x4 x6 x8 = pack_b_b_u_u x1 x3 x5 x7 x9 ⟶ and (and (and (and (x0 = x1) (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x2 x10 x11 = x3 x10 x11)) (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x4 x10 x11 = x5 x10 x11)) (∀ x10 . x10 ∈ x0 ⟶ x6 x10 = x7 x10)) (∀ x10 . x10 ∈ x0 ⟶ x8 x10 = x9 x10) (proof)Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x1 x3 = x2 x3) ⟶ lam x0 x1 = lam x0 x2Theorem pack_b_b_u_u_ext : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ι . ∀ x5 x6 x7 x8 : ι → ι . (∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x1 x9 x10 = x2 x9 x10) ⟶ (∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x3 x9 x10 = x4 x9 x10) ⟶ (∀ x9 . x9 ∈ x0 ⟶ x5 x9 = x6 x9) ⟶ (∀ x9 . x9 ∈ x0 ⟶ x7 x9 = x8 x9) ⟶ pack_b_b_u_u x0 x1 x3 x5 x7 = pack_b_b_u_u x0 x2 x4 x6 x8 (proof)Definition struct_b_b_u_u := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ ∀ x4 : ι → ι → ι . (∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ x4 x5 x6 ∈ x2) ⟶ ∀ x5 : ι → ι . (∀ x6 . x6 ∈ x2 ⟶ x5 x6 ∈ x2) ⟶ ∀ x6 : ι → ι . (∀ x7 . x7 ∈ x2 ⟶ x6 x7 ∈ x2) ⟶ x1 (pack_b_b_u_u x2 x3 x4 x5 x6)) ⟶ x1 x0Theorem pack_struct_b_b_u_u_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 x4 ∈ x0) ⟶ ∀ x3 : ι → ι . (∀ x4 . x4 ∈ x0 ⟶ x3 x4 ∈ x0) ⟶ ∀ x4 : ι → ι . (∀ x5 . x5 ∈ x0 ⟶ x4 x5 ∈ x0) ⟶ struct_b_b_u_u (pack_b_b_u_u x0 x1 x2 x3 x4) (proof)Theorem pack_struct_b_b_u_u_E1 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . struct_b_b_u_u (pack_b_b_u_u x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 x5 x6 ∈ x0 (proof)Theorem pack_struct_b_b_u_u_E2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . struct_b_b_u_u (pack_b_b_u_u x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x2 x5 x6 ∈ x0 (proof)Theorem pack_struct_b_b_u_u_E3 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . struct_b_b_u_u (pack_b_b_u_u x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 x5 ∈ x0 (proof)Theorem pack_struct_b_b_u_u_E4 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . struct_b_b_u_u (pack_b_b_u_u x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ x4 x5 ∈ x0 (proof)Theorem struct_b_b_u_u_eta : ∀ x0 . struct_b_b_u_u x0 ⟶ x0 = pack_b_b_u_u (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3)) (ap (ap x0 4)) (proof)Definition unpack_b_b_u_u_i := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ι) → ι . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3)) (ap (ap x0 4))Theorem unpack_b_b_u_u_i_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ι) → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . (∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x2 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x3 x8 x9 = x7 x8 x9) ⟶ ∀ x8 : ι → ι . (∀ x9 . x9 ∈ x1 ⟶ x4 x9 = x8 x9) ⟶ ∀ x9 : ι → ι . (∀ x10 . x10 ∈ x1 ⟶ x5 x10 = x9 x10) ⟶ x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5) ⟶ unpack_b_b_u_u_i (pack_b_b_u_u x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)Definition unpack_b_b_u_u_o := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ι) → ο . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3)) (ap (ap x0 4))Theorem unpack_b_b_u_u_o_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ι) → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . (∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x2 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x3 x8 x9 = x7 x8 x9) ⟶ ∀ x8 : ι → ι . (∀ x9 . x9 ∈ x1 ⟶ x4 x9 = x8 x9) ⟶ ∀ x9 : ι → ι . (∀ x10 . x10 ∈ x1 ⟶ x5 x10 = x9 x10) ⟶ x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5) ⟶ unpack_b_b_u_u_o (pack_b_b_u_u x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)Param encode_rencode_r : ι → (ι → ι → ο) → ιDefinition pack_b_b_u_r := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 : ι → ι . λ x4 : ι → ι → ο . lam 5 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) (encode_b x0 x1) (If_i (x5 = 2) (encode_b x0 x2) (If_i (x5 = 3) (lam x0 x3) (encode_r x0 x4)))))Theorem pack_b_b_u_r_0_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . x0 = pack_b_b_u_r x1 x2 x3 x4 x5 ⟶ x1 = ap x0 0 (proof)Theorem pack_b_b_u_r_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 : ι → ι → ο . x5 x0 (ap (pack_b_b_u_r x0 x1 x2 x3 x4) 0) ⟶ x5 (ap (pack_b_b_u_r x0 x1 x2 x3 x4) 0) x0 (proof)Theorem pack_b_b_u_r_1_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . x0 = pack_b_b_u_r x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = decode_b (ap x0 1) x6 x7 (proof)Theorem pack_b_b_u_r_1_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 x5 x6 = decode_b (ap (pack_b_b_u_r x0 x1 x2 x3 x4) 1) x5 x6 (proof)Theorem pack_b_b_u_r_2_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . x0 = pack_b_b_u_r x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x3 x6 x7 = decode_b (ap x0 2) x6 x7 (proof)Theorem pack_b_b_u_r_2_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x2 x5 x6 = decode_b (ap (pack_b_b_u_r x0 x1 x2 x3 x4) 2) x5 x6 (proof)Theorem pack_b_b_u_r_3_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . x0 = pack_b_b_u_r x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x4 x6 = ap (ap x0 3) x6 (proof)Theorem pack_b_b_u_r_3_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x5 ∈ x0 ⟶ x3 x5 = ap (ap (pack_b_b_u_r x0 x1 x2 x3 x4) 3) x5 (proof)Param decode_rdecode_r : ι → ι → ι → οKnown decode_encode_rdecode_encode_r : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ decode_r (encode_r x0 x1) x2 x3 = x1 x2 x3Theorem pack_b_b_u_r_4_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . x0 = pack_b_b_u_r x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x5 x6 x7 = decode_r (ap x0 4) x6 x7 (proof)Theorem pack_b_b_u_r_4_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 = decode_r (ap (pack_b_b_u_r x0 x1 x2 x3 x4) 4) x5 x6 (proof)Theorem pack_b_b_u_r_inj : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι . ∀ x8 x9 : ι → ι → ο . pack_b_b_u_r x0 x2 x4 x6 x8 = pack_b_b_u_r x1 x3 x5 x7 x9 ⟶ and (and (and (and (x0 = x1) (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x2 x10 x11 = x3 x10 x11)) (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x4 x10 x11 = x5 x10 x11)) (∀ x10 . x10 ∈ x0 ⟶ x6 x10 = x7 x10)) (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x8 x10 x11 = x9 x10 x11) (proof)Param iffiff : ο → ο → οKnown encode_r_extencode_r_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ iff (x1 x3 x4) (x2 x3 x4)) ⟶ encode_r x0 x1 = encode_r x0 x2Theorem pack_b_b_u_r_ext : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι . ∀ x7 x8 : ι → ι → ο . (∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x1 x9 x10 = x2 x9 x10) ⟶ (∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x3 x9 x10 = x4 x9 x10) ⟶ (∀ x9 . x9 ∈ x0 ⟶ x5 x9 = x6 x9) ⟶ (∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ iff (x7 x9 x10) (x8 x9 x10)) ⟶ pack_b_b_u_r x0 x1 x3 x5 x7 = pack_b_b_u_r x0 x2 x4 x6 x8 (proof)Definition struct_b_b_u_r := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ ∀ x4 : ι → ι → ι . (∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ x4 x5 x6 ∈ x2) ⟶ ∀ x5 : ι → ι . (∀ x6 . x6 ∈ x2 ⟶ x5 x6 ∈ x2) ⟶ ∀ x6 : ι → ι → ο . x1 (pack_b_b_u_r x2 x3 x4 x5 x6)) ⟶ x1 x0Theorem pack_struct_b_b_u_r_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 x4 ∈ x0) ⟶ ∀ x3 : ι → ι . (∀ x4 . x4 ∈ x0 ⟶ x3 x4 ∈ x0) ⟶ ∀ x4 : ι → ι → ο . struct_b_b_u_r (pack_b_b_u_r x0 x1 x2 x3 x4) (proof)Theorem pack_struct_b_b_u_r_E1 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . struct_b_b_u_r (pack_b_b_u_r x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 x5 x6 ∈ x0 (proof)Theorem pack_struct_b_b_u_r_E2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . struct_b_b_u_r (pack_b_b_u_r x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x2 x5 x6 ∈ x0 (proof)Theorem pack_struct_b_b_u_r_E3 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . struct_b_b_u_r (pack_b_b_u_r x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 x5 ∈ x0 (proof)Known iff_refliff_refl : ∀ x0 : ο . iff x0 x0Theorem struct_b_b_u_r_eta : ∀ x0 . struct_b_b_u_r x0 ⟶ x0 = pack_b_b_u_r (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3)) (decode_r (ap x0 4)) (proof)Definition unpack_b_b_u_r_i := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ι → ο) → ι . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3)) (decode_r (ap x0 4))Theorem unpack_b_b_u_r_i_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ι → ο) → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x2 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x3 x8 x9 = x7 x8 x9) ⟶ ∀ x8 : ι → ι . (∀ x9 . x9 ∈ x1 ⟶ x4 x9 = x8 x9) ⟶ ∀ x9 : ι → ι → ο . (∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ iff (x5 x10 x11) (x9 x10 x11)) ⟶ x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5) ⟶ unpack_b_b_u_r_i (pack_b_b_u_r x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)Definition unpack_b_b_u_r_o := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ι → ο) → ο . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3)) (decode_r (ap x0 4))Theorem unpack_b_b_u_r_o_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ι → ο) → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x2 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x3 x8 x9 = x7 x8 x9) ⟶ ∀ x8 : ι → ι . (∀ x9 . x9 ∈ x1 ⟶ x4 x9 = x8 x9) ⟶ ∀ x9 : ι → ι → ο . (∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ iff (x5 x10 x11) (x9 x10 x11)) ⟶ x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5) ⟶ unpack_b_b_u_r_o (pack_b_b_u_r x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)Param SepSep : ι → (ι → ο) → ιDefinition pack_b_b_u_p := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 : ι → ι . λ x4 : ι → ο . lam 5 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) (encode_b x0 x1) (If_i (x5 = 2) (encode_b x0 x2) (If_i (x5 = 3) (lam x0 x3) (Sep x0 x4)))))Theorem pack_b_b_u_p_0_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . x0 = pack_b_b_u_p x1 x2 x3 x4 x5 ⟶ x1 = ap x0 0 (proof)Theorem pack_b_b_u_p_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . x0 = ap (pack_b_b_u_p x0 x1 x2 x3 x4) 0 (proof)Theorem pack_b_b_u_p_1_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . x0 = pack_b_b_u_p x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = decode_b (ap x0 1) x6 x7 (proof)Theorem pack_b_b_u_p_1_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 x5 x6 = decode_b (ap (pack_b_b_u_p x0 x1 x2 x3 x4) 1) x5 x6 (proof)Theorem pack_b_b_u_p_2_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . x0 = pack_b_b_u_p x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x3 x6 x7 = decode_b (ap x0 2) x6 x7 (proof)Theorem pack_b_b_u_p_2_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x2 x5 x6 = decode_b (ap (pack_b_b_u_p x0 x1 x2 x3 x4) 2) x5 x6 (proof)Theorem pack_b_b_u_p_3_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . x0 = pack_b_b_u_p x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x4 x6 = ap (ap x0 3) x6 (proof)Theorem pack_b_b_u_p_3_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . x5 ∈ x0 ⟶ x3 x5 = ap (ap (pack_b_b_u_p x0 x1 x2 x3 x4) 3) x5 (proof)Param decode_pdecode_p : ι → ι → οKnown decode_encode_pdecode_encode_p : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ x0 ⟶ decode_p (Sep x0 x1) x2 = x1 x2Theorem pack_b_b_u_p_4_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . x0 = pack_b_b_u_p x1 x2 x3 x4 x5 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x5 x6 = decode_p (ap x0 4) x6 (proof)Theorem pack_b_b_u_p_4_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . x5 ∈ x0 ⟶ x4 x5 = decode_p (ap (pack_b_b_u_p x0 x1 x2 x3 x4) 4) x5 (proof)Theorem pack_b_b_u_p_inj : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι . ∀ x8 x9 : ι → ο . pack_b_b_u_p x0 x2 x4 x6 x8 = pack_b_b_u_p x1 x3 x5 x7 x9 ⟶ and (and (and (and (x0 = x1) (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x2 x10 x11 = x3 x10 x11)) (∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ x4 x10 x11 = x5 x10 x11)) (∀ x10 . x10 ∈ x0 ⟶ x6 x10 = x7 x10)) (∀ x10 . x10 ∈ x0 ⟶ x8 x10 = x9 x10) (proof)Known encode_p_extencode_p_ext : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3 ∈ x0 ⟶ iff (x1 x3) (x2 x3)) ⟶ Sep x0 x1 = Sep x0 x2Theorem pack_b_b_u_p_ext : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι . ∀ x7 x8 : ι → ο . (∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x1 x9 x10 = x2 x9 x10) ⟶ (∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x3 x9 x10 = x4 x9 x10) ⟶ (∀ x9 . x9 ∈ x0 ⟶ x5 x9 = x6 x9) ⟶ (∀ x9 . x9 ∈ x0 ⟶ iff (x7 x9) (x8 x9)) ⟶ pack_b_b_u_p x0 x1 x3 x5 x7 = pack_b_b_u_p x0 x2 x4 x6 x8 (proof)Definition struct_b_b_u_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ ∀ x4 : ι → ι → ι . (∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ x4 x5 x6 ∈ x2) ⟶ ∀ x5 : ι → ι . (∀ x6 . x6 ∈ x2 ⟶ x5 x6 ∈ x2) ⟶ ∀ x6 : ι → ο . x1 (pack_b_b_u_p x2 x3 x4 x5 x6)) ⟶ x1 x0Theorem pack_struct_b_b_u_p_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 x4 ∈ x0) ⟶ ∀ x3 : ι → ι . (∀ x4 . x4 ∈ x0 ⟶ x3 x4 ∈ x0) ⟶ ∀ x4 : ι → ο . struct_b_b_u_p (pack_b_b_u_p x0 x1 x2 x3 x4) (proof)Theorem pack_struct_b_b_u_p_E1 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . struct_b_b_u_p (pack_b_b_u_p x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 x5 x6 ∈ x0 (proof)Theorem pack_struct_b_b_u_p_E2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . struct_b_b_u_p (pack_b_b_u_p x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x2 x5 x6 ∈ x0 (proof)Theorem pack_struct_b_b_u_p_E3 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . struct_b_b_u_p (pack_b_b_u_p x0 x1 x2 x3 x4) ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 x5 ∈ x0 (proof)Theorem struct_b_b_u_p_eta : ∀ x0 . struct_b_b_u_p x0 ⟶ x0 = pack_b_b_u_p (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3)) (decode_p (ap x0 4)) (proof)Definition unpack_b_b_u_p_i := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ο) → ι . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3)) (decode_p (ap x0 4))Theorem unpack_b_b_u_p_i_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ο) → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x2 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x3 x8 x9 = x7 x8 x9) ⟶ ∀ x8 : ι → ι . (∀ x9 . x9 ∈ x1 ⟶ x4 x9 = x8 x9) ⟶ ∀ x9 : ι → ο . (∀ x10 . x10 ∈ x1 ⟶ iff (x5 x10) (x9 x10)) ⟶ x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5) ⟶ unpack_b_b_u_p_i (pack_b_b_u_p x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)Definition unpack_b_b_u_p_o := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ο) → ο . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3)) (decode_p (ap x0 4))Theorem unpack_b_b_u_p_o_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → (ι → ο) → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . ∀ x5 : ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x2 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x3 x8 x9 = x7 x8 x9) ⟶ ∀ x8 : ι → ι . (∀ x9 . x9 ∈ x1 ⟶ x4 x9 = x8 x9) ⟶ ∀ x9 : ι → ο . (∀ x10 . x10 ∈ x1 ⟶ iff (x5 x10) (x9 x10)) ⟶ x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5) ⟶ unpack_b_b_u_p_o (pack_b_b_u_p x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
|
|