Search for blocks/addresses/...
Proofgold Address
address
PUS1J1hc8R5MUBQwTQVn2V1B6Z4bg76SevK
total
0
mg
-
conjpub
-
current assets
b9c69..
/
c8dbe..
bday:
28233
doc published by
PrQUS..
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Param
real
real
:
ι
Param
ad280..
:
ι
→
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
e523d..
:=
{
ad280..
(
ap
x0
0
)
(
ap
x0
1
)
|x0 ∈
setprod
real
real
}
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Theorem
d30b7..
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
ad280..
x0
x1
∈
e523d..
(proof)
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Theorem
37b9f..
:
∀ x0 .
x0
∈
e523d..
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
real
⟶
∀ x3 .
x3
∈
real
⟶
x0
=
ad280..
x2
x3
⟶
x1
)
⟶
x1
(proof)
Param
c7ce4..
:
ι
→
ο
Param
SNo
SNo
:
ι
→
ο
Known
e4080..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
c7ce4..
(
ad280..
x0
x1
)
Known
real_SNo
real_SNo
:
∀ x0 .
x0
∈
real
⟶
SNo
x0
Theorem
8a1f4..
:
∀ x0 .
x0
∈
e523d..
⟶
c7ce4..
x0
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
43bcd..
:
∀ x0 .
ad280..
x0
0
=
x0
Known
real_0
real_0
:
0
∈
real
Theorem
cf956..
:
real
⊆
e523d..
(proof)
Theorem
539a5..
:
0
∈
e523d..
(proof)
Known
real_1
real_1
:
1
∈
real
Theorem
b8ac1..
:
1
∈
e523d..
(proof)
Definition
8d0f8..
:=
ad280..
0
1
Theorem
3e36c..
:
8d0f8..
∈
e523d..
(proof)
Param
28f8d..
:
ι
→
ι
Known
1c01b..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
28f8d..
(
ad280..
x0
x1
)
=
x0
Theorem
1d845..
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
28f8d..
(
ad280..
x0
x1
)
=
x0
(proof)
Param
d634d..
:
ι
→
ι
Known
5b520..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
d634d..
(
ad280..
x0
x1
)
=
x1
Theorem
7419a..
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
d634d..
(
ad280..
x0
x1
)
=
x1
(proof)
Theorem
2c805..
:
∀ x0 .
x0
∈
e523d..
⟶
28f8d..
x0
∈
real
(proof)
Theorem
5adde..
:
∀ x0 .
x0
∈
e523d..
⟶
d634d..
x0
∈
real
(proof)
Known
371c6..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
28f8d..
x0
=
28f8d..
x1
⟶
d634d..
x0
=
d634d..
x1
⟶
x0
=
x1
Theorem
b03c2..
:
∀ x0 .
x0
∈
e523d..
⟶
∀ x1 .
x1
∈
e523d..
⟶
28f8d..
x0
=
28f8d..
x1
⟶
d634d..
x0
=
d634d..
x1
⟶
x0
=
x1
(proof)
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
b1848..
:=
λ x0 .
ad280..
(
minus_SNo
(
28f8d..
x0
)
)
(
minus_SNo
(
d634d..
x0
)
)
Known
real_minus_SNo
real_minus_SNo
:
∀ x0 .
x0
∈
real
⟶
minus_SNo
x0
∈
real
Theorem
a0a29..
:
∀ x0 .
x0
∈
e523d..
⟶
b1848..
x0
∈
e523d..
(proof)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Definition
a0628..
:=
λ x0 x1 .
ad280..
(
add_SNo
(
28f8d..
x0
)
(
28f8d..
x1
)
)
(
add_SNo
(
d634d..
x0
)
(
d634d..
x1
)
)
Known
real_add_SNo
real_add_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
add_SNo
x0
x1
∈
real
Theorem
2c51c..
:
∀ x0 .
x0
∈
e523d..
⟶
∀ x1 .
x1
∈
e523d..
⟶
a0628..
x0
x1
∈
e523d..
(proof)
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Definition
22598..
:=
λ x0 x1 .
ad280..
(
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
28f8d..
x1
)
)
(
minus_SNo
(
mul_SNo
(
d634d..
x0
)
(
d634d..
x1
)
)
)
)
(
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
d634d..
x1
)
)
(
mul_SNo
(
d634d..
x0
)
(
28f8d..
x1
)
)
)
Known
real_mul_SNo
real_mul_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
mul_SNo
x0
x1
∈
real
Theorem
4e788..
:
∀ x0 .
x0
∈
e523d..
⟶
∀ x1 .
x1
∈
e523d..
⟶
22598..
x0
x1
∈
e523d..
(proof)
Theorem
7f5c4..
:
∀ x0 .
x0
∈
real
⟶
28f8d..
x0
=
x0
(proof)
Theorem
6ab69..
:
∀ x0 .
x0
∈
real
⟶
d634d..
x0
=
0
(proof)
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
SNo_1
SNo_1
:
SNo
1
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
SNo_0
SNo_0
:
SNo
0
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Theorem
41c17..
:
∀ x0 .
x0
∈
real
⟶
22598..
8d0f8..
x0
=
ad280..
0
x0
(proof)
Theorem
6f070..
:
∀ x0 .
x0
∈
real
⟶
28f8d..
(
22598..
8d0f8..
x0
)
=
0
(proof)
Theorem
5bda1..
:
∀ x0 .
x0
∈
real
⟶
d634d..
(
22598..
8d0f8..
x0
)
=
x0
(proof)
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Theorem
7c38f..
:
∀ x0 .
x0
∈
e523d..
⟶
x0
=
a0628..
(
28f8d..
x0
)
(
22598..
8d0f8..
(
d634d..
x0
)
)
(proof)
Param
div_SNo
div_SNo
:
ι
→
ι
→
ι
Param
exp_SNo_nat
exp_SNo_nat
:
ι
→
ι
→
ι
Definition
41fb9..
:=
λ x0 .
ad280..
(
div_SNo
(
28f8d..
x0
)
(
add_SNo
(
exp_SNo_nat
(
28f8d..
x0
)
2
)
(
exp_SNo_nat
(
d634d..
x0
)
2
)
)
)
(
minus_SNo
(
div_SNo
(
d634d..
x0
)
(
add_SNo
(
exp_SNo_nat
(
28f8d..
x0
)
2
)
(
exp_SNo_nat
(
d634d..
x0
)
2
)
)
)
)
Known
real_div_SNo
real_div_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
div_SNo
x0
x1
∈
real
Known
exp_SNo_nat_2
exp_SNo_nat_2
:
∀ x0 .
SNo
x0
⟶
exp_SNo_nat
x0
2
=
mul_SNo
x0
x0
Known
eb0da..
:
∀ x0 .
c7ce4..
x0
⟶
SNo
(
d634d..
x0
)
Known
85533..
:
∀ x0 .
c7ce4..
x0
⟶
SNo
(
28f8d..
x0
)
Theorem
66311..
:
∀ x0 .
x0
∈
e523d..
⟶
41fb9..
x0
∈
e523d..
(proof)
Definition
74066..
:=
λ x0 x1 .
22598..
x0
(
41fb9..
x1
)
Theorem
4d97a..
:
∀ x0 .
x0
∈
e523d..
⟶
∀ x1 .
x1
∈
e523d..
⟶
74066..
x0
x1
∈
e523d..
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Theorem
9e5a7..
:
real
=
{x1 ∈
e523d..
|
28f8d..
x1
=
x1
}
(proof)
previous assets