current assets |
---|
2863a../15b85.. bday: 27296 doc published by Pr5Zc..Known c0c54.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x2 x8)))))Known d5477.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x5 (x1 x2 (x1 x6 (x1 x3 (x1 x4 x7))))Theorem 3da5c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x5 (x1 x8 (x1 x9 x3)))))) (proof)Theorem 905da.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x5 (x1 x8 (x1 x9 x3)))))) (proof)Known 25625.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x3 (x1 x4 (x1 x8 (x1 x7 x9))))))Theorem 05862.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x5 (x1 x9 (x1 x8 x3)))))) (proof)Theorem 6ecc6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x5 (x1 x9 (x1 x8 x3)))))) (proof)Known 8df58.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x5 (x1 x8 (x1 x3 x9))))))Theorem 1c73b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x5 (x1 x9 (x1 x3 x8)))))) (proof)Theorem 36a57.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x5 (x1 x9 (x1 x3 x8)))))) (proof)Known 33cb2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x3 (x1 x5 x8)))))Theorem d43b0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x3 (x1 x5 (x1 x9 x8)))))) (proof)Theorem 2c15f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x3 (x1 x5 (x1 x9 x8)))))) (proof)Known 93eac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x3 (x1 x4 (x1 x5 (x1 x2 x6)))Known 7d0e6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x5 (x1 x2 (x1 x6 (x1 x4 (x1 x3 x7))))Theorem 00b21.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x3 (x1 x8 (x1 x9 x5)))))) (proof)Theorem c0761.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x3 (x1 x8 (x1 x9 x5)))))) (proof)Known 68c89.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x4 (x1 x3 (x1 x8 (x1 x7 x9))))))Theorem 890c3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x3 (x1 x9 (x1 x8 x5)))))) (proof)Theorem 5e9da.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x3 (x1 x9 (x1 x8 x5)))))) (proof)Known 87681.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x3 (x1 x8 (x1 x5 x9))))))Theorem 49bf3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x3 (x1 x9 (x1 x5 x8)))))) (proof)Theorem c45a9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x4 (x1 x3 (x1 x9 (x1 x5 x8)))))) (proof)Known 75b00.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x2 x7))))Known a9e34.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x4 (x1 x8 (x1 x3 (x1 x7 x9))))))Theorem cbd0d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x3 (x1 x8 x4)))))) (proof)Theorem 324e3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x3 (x1 x8 x4)))))) (proof)Known 6dcc1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x3 (x1 x4 x9))))))Theorem d2a9c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x3 (x1 x4 x8)))))) (proof)Theorem e6d5b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x3 (x1 x4 x8)))))) (proof)Theorem 6db5f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x4 (x1 x8 x3)))))) (proof)Theorem b9f67.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x4 (x1 x8 x3)))))) (proof)Known 54d1f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x4 (x1 x3 x9))))))Theorem 3ed13.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x4 (x1 x3 x8)))))) (proof)Theorem bba1b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x4 (x1 x3 x8)))))) (proof)Known 95fe9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x4 (x1 x8 (x1 x7 (x1 x3 x9))))))Theorem e9d93.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x8 (x1 x4 x3)))))) (proof)Theorem a7a06.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x8 (x1 x4 x3)))))) (proof)Theorem 44627.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x8 (x1 x3 x4)))))) (proof)Theorem 137b0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x9 (x1 x8 (x1 x3 x4)))))) (proof)Known 2e820.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x5 (x1 x2 (x1 x6 (x1 x4 (x1 x7 (x1 x3 x8)))))Theorem 155c8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x3 (x1 x9 x4)))))) (proof)Theorem bffc2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x3 (x1 x9 x4)))))) (proof)Theorem 5499d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x4 (x1 x9 x3)))))) (proof)Theorem 97d03.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x4 (x1 x9 x3)))))) (proof)Known 7ea48.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x4 (x1 x7 (x1 x8 (x1 x3 x9))))))Theorem 920a6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x9 (x1 x4 x3)))))) (proof)Theorem fb3d2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x9 (x1 x4 x3)))))) (proof)Theorem d76d1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x9 (x1 x3 x4)))))) (proof)Theorem 9387b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x9 (x1 x3 x4)))))) (proof)Known d10b4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x4 (x1 x3 x8)))))Theorem bd74d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x4 (x1 x3 (x1 x9 x8)))))) (proof)Theorem 8d1f2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x4 (x1 x3 (x1 x9 x8)))))) (proof)Theorem 9cc3c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x4 (x1 x8 (x1 x9 x3)))))) (proof)Theorem f09a5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x4 (x1 x8 (x1 x9 x3)))))) (proof)Theorem 1c4e8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x4 (x1 x9 (x1 x8 x3)))))) (proof)Theorem 84ea6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x4 (x1 x9 (x1 x8 x3)))))) (proof)Known c09fc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x4 (x1 x8 (x1 x3 x9))))))Theorem 9e551.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x4 (x1 x9 (x1 x3 x8)))))) (proof)Theorem ec607.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x4 (x1 x9 (x1 x3 x8)))))) (proof)Known 5382c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x3 (x1 x4 x8)))))Theorem 5bf65.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x3 (x1 x4 (x1 x9 x8)))))) (proof)Theorem 531b2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x3 (x1 x4 (x1 x9 x8)))))) (proof)Theorem 53345.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x3 (x1 x8 (x1 x9 x4)))))) (proof)Theorem 9a078.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x3 (x1 x8 (x1 x9 x4)))))) (proof)Theorem 5792b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x3 (x1 x9 (x1 x8 x4)))))) (proof)Theorem 5bfe6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x3 (x1 x9 (x1 x8 x4)))))) (proof)Known 25c5b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x3 (x1 x8 (x1 x4 x9))))))Theorem 1d139.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x3 (x1 x9 (x1 x4 x8)))))) (proof)Theorem 27ba4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x5 (x1 x3 (x1 x9 (x1 x4 x8)))))) (proof)Known 112de.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x7 (x1 x8 (x1 x3 (x1 x4 x9))))))Theorem f588b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x3 (x1 x5 x4)))))) (proof)Theorem f1848.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x3 (x1 x5 x4)))))) (proof)Theorem a59ef.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x3 (x1 x4 x5)))))) (proof)Theorem 804fb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x3 (x1 x4 x5)))))) (proof)Theorem 4c840.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x4 (x1 x5 x3)))))) (proof)Theorem 09d97.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x4 (x1 x5 x3)))))) (proof)Known cc7ef.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x7 (x1 x8 (x1 x4 (x1 x3 x9))))))Theorem 1312f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x4 (x1 x3 x5)))))) (proof)Theorem 9e0b3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x4 (x1 x3 x5)))))) (proof)Theorem b2899.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x5 (x1 x4 x3)))))) (proof)Theorem 2ac74.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x5 (x1 x4 x3)))))) (proof)Theorem 51e42.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x5 (x1 x3 x4)))))) (proof)Theorem 8b3b8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x9 (x1 x5 (x1 x3 x4)))))) (proof)Known b77bb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x5 (x1 x2 (x1 x6 (x1 x7 (x1 x4 (x1 x3 x8)))))Theorem 31d63.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x3 (x1 x9 x4)))))) (proof)Theorem aa126.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x3 (x1 x9 x4)))))) (proof)Theorem 5208b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x4 (x1 x9 x3)))))) (proof)Theorem f5a8e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x4 (x1 x9 x3)))))) (proof)Known b2aaa.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x7 (x1 x4 (x1 x8 (x1 x3 x9))))))Theorem 3f21b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x9 (x1 x4 x3)))))) (proof)Theorem 9c2ab.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x9 (x1 x4 x3)))))) (proof)Theorem 4dfc8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x9 (x1 x3 x4)))))) (proof)Theorem 9aed0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x9 (x1 x3 x4)))))) (proof)Theorem fd279.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x4 (x1 x3 (x1 x9 x5)))))) (proof)Theorem 38dc3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x4 (x1 x3 (x1 x9 x5)))))) (proof)Known f8a60.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x5 (x1 x2 (x1 x6 (x1 x7 (x1 x3 (x1 x4 x8)))))Theorem a68e0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x4 (x1 x5 (x1 x9 x3)))))) (proof)Theorem 0c4db.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x4 (x1 x5 (x1 x9 x3)))))) (proof)Known 266e1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x7 (x1 x3 (x1 x8 (x1 x4 x9))))))Theorem c73b3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x4 (x1 x9 (x1 x5 x3)))))) (proof)Theorem 13086.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x4 (x1 x9 (x1 x5 x3)))))) (proof)Theorem 93071.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x4 (x1 x9 (x1 x3 x5)))))) (proof)Theorem f204c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x4 (x1 x9 (x1 x3 x5)))))) (proof)Theorem f8d79.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x3 (x1 x4 (x1 x9 x5)))))) (proof)Theorem 6eee1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x3 (x1 x4 (x1 x9 x5)))))) (proof)Theorem b639c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x3 (x1 x5 (x1 x9 x4)))))) (proof)Theorem b32ae.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x3 (x1 x5 (x1 x9 x4)))))) (proof)Theorem d3172.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x3 (x1 x9 (x1 x5 x4)))))) (proof)Theorem abc33.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x3 (x1 x9 (x1 x5 x4)))))) (proof)Theorem 38c3b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x3 (x1 x9 (x1 x4 x5)))))) (proof)Theorem 6f747.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x3 (x1 x9 (x1 x4 x5)))))) (proof)Known e644c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x8 (x1 x7 (x1 x3 (x1 x4 x9))))))Theorem e7ba9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x3 (x1 x5 x4)))))) (proof)Theorem 41eac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x3 (x1 x5 x4)))))) (proof)Theorem d1df5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x3 (x1 x4 x5)))))) (proof)Theorem 08d63.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x3 (x1 x4 x5)))))) (proof)Theorem 3caee.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x4 (x1 x5 x3)))))) (proof)Theorem 1879f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x4 (x1 x5 x3)))))) (proof)Known f0151.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x8 (x1 x7 (x1 x4 (x1 x3 x9))))))Theorem 4f598.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x4 (x1 x3 x5)))))) (proof)Theorem 06361.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x4 (x1 x3 x5)))))) (proof)Theorem a4bd6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x5 (x1 x4 x3)))))) (proof)Theorem bed15.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x5 (x1 x4 x3)))))) (proof)Theorem 40cd3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x5 (x1 x3 x4)))))) (proof)Theorem 555e5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x8 (x1 x5 (x1 x3 x4)))))) (proof)Known 3d7b4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x2 (x1 x6 (x1 x8 (x1 x4 (x1 x3 (x1 x7 x9))))))Theorem 2fd57.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x5 (x1 x3 (x1 x8 x4)))))) (proof)Theorem e8089.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x5 (x1 x3 (x1 x8 x4)))))) (proof)Known 4a7dd.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x3 (x1 x4 x9))))))Theorem e0ca9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x5 (x1 x3 (x1 x4 x8)))))) (proof)Theorem 63289.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x5 (x1 x3 (x1 x4 x8)))))) (proof)Theorem 345fd.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x5 (x1 x4 (x1 x8 x3)))))) (proof)Theorem 0a1ff.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x5 (x1 x4 (x1 x8 x3)))))) (proof)Known f4185.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x4 (x1 x3 x9))))))Theorem ff7be.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x5 (x1 x4 (x1 x3 x8)))))) (proof)Theorem 4fae6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x9 (x1 x5 (x1 x4 (x1 x3 x8)))))) (proof)
|
|