Search for blocks/addresses/...

Proofgold Address

address
PUTQ1E3yFx9bqAmx7nEanNMXveuJez3wqeH
total
0
mg
-
conjpub
-
current assets
6c6d3../c8fd2.. bday: 21829 doc published by Pr4zB..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known dd142.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5x8 x6x8 x7∀ x9 . x0 x9x8 x9)(∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5∀ x9 . x1 x9x8 x9)(∀ x8 . x0 x8not (x1 x8)∀ x9 : ι → ο . x9 x6x9 x7x9 x8)x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x1 x2x1 x3x1 x4x1 x5not (x1 x6)not (x1 x7)(x2 = x3∀ x8 : ο . x8)(x2 = x4∀ x8 : ο . x8)(x2 = x5∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x2 = x7∀ x8 : ο . x8)(x3 = x4∀ x8 : ο . x8)(x3 = x5∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x3 = x7∀ x8 : ο . x8)(x4 = x5∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x4 = x7∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)(x5 = x7∀ x8 : ο . x8)(x6 = x7∀ x8 : ο . x8)∀ x8 x9 x10 : ι → ι → ι . (∀ x11 . x0 x11∀ x12 . x0 x12x0 (x8 x11 x12))(∀ x11 . x0 x11∀ x12 . x1 x12x1 (x8 x11 x12))(∀ x11 . x0 x11∀ x12 . x0 x12x8 x11 (x8 x11 x12) = x12)(∀ x11 . x0 x11x8 x11 x2 = x3)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (x9 x11 x12))(∀ x11 . x0 x11∀ x12 . x1 x12x1 (x9 x11 x12))(∀ x11 . x0 x11∀ x12 . x0 x12x9 x11 (x9 x11 x12) = x12)(∀ x11 . x0 x11x9 x11 x2 = x4)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (x10 x11 x12))(∀ x11 . x0 x11∀ x12 . x1 x12x1 (x10 x11 x12))(∀ x11 . x0 x11∀ x12 . x0 x12x10 x11 (x10 x11 x12) = x12)(∀ x11 . x0 x11x10 x11 x2 = x5)∀ x11 : ι → ι → ι → ι → ο . (∀ x12 x13 . not (x11 x12 x13 x12 x13))(∀ x12 x13 x14 x15 x16 x17 . x0 x16x0 x17x11 x12 x13 x14 x15x11 x14 x15 x16 x17x11 x12 x13 x16 x17)(∀ x12 . x0 x12∀ x13 . x1 x13∀ x14 . x0 x14∀ x15 . x0 x15not (x1 x15)x11 x12 x13 x14 x15)(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x3 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x4 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x5 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x6 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x7 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x4 x13 x3))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x5 x13 x3))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x6 x13 x3))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x7 x13 x3))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x5 x13 x4))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x6 x13 x4))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x7 x13 x4))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x6 x13 x5))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x7 x13 x5))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x7 x13 x6))(∀ x12 . x0 x12not (x11 x2 x12 x2 x12))(∀ x12 . x0 x12not (x11 x3 x12 x2 x12))(∀ x12 . x0 x12not (x11 x4 x12 x2 x12))(∀ x12 . x0 x12not (x11 x5 x12 x2 x12))(∀ x12 . x0 x12not (x11 x6 x12 x2 x12))(∀ x12 . x0 x12not (x11 x7 x12 x2 x12))(∀ x12 . x0 x12not (x11 x3 x12 x3 x12))(∀ x12 . x0 x12not (x11 x4 x12 x3 x12))(∀ x12 . x0 x12not (x11 x5 x12 x3 x12))(∀ x12 . x0 x12not (x11 x6 x12 x3 x12))(∀ x12 . x0 x12not (x11 x7 x12 x3 x12))(∀ x12 . x0 x12not (x11 x4 x12 x4 x12))(∀ x12 . x0 x12not (x11 x5 x12 x4 x12))(∀ x12 . x0 x12not (x11 x6 x12 x4 x12))(∀ x12 . x0 x12not (x11 x7 x12 x4 x12))(∀ x12 . x0 x12not (x11 x5 x12 x5 x12))(∀ x12 . x0 x12not (x11 x6 x12 x5 x12))(∀ x12 . x0 x12not (x11 x7 x12 x5 x12))(∀ x12 . x0 x12not (x11 x6 x12 x6 x12))(∀ x12 . x0 x12not (x11 x7 x12 x6 x12))(∀ x12 . x0 x12not (x11 x7 x12 x7 x12))∀ x12 : ι → ι → ι → ι → ο . (∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16∀ x17 : ο . (x11 x13 x14 x15 x16x17)(x12 x13 x14 x15 x16x17)(x11 x15 x16 x13 x14x17)x17)(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16not (x12 x13 x14 x15 x16)not (x12 x13 (x8 x13 x14) x15 (x8 x15 x16)))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16not (x12 x13 x14 x15 x16)not (x12 x13 (x9 x13 x14) x15 (x9 x15 x16)))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16not (x12 x13 x14 x15 x16)not (x12 x13 (x10 x13 x14) x15 (x10 x15 x16)))(∀ x13 x14 . x0 x13x0 x14x12 x13 x14 x13 x14)(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x15 x16 x13 x14)(∀ x13 x14 . x0 x13x0 x14x12 x13 x14 x7 x7)(∀ x13 . x0 x13x12 x6 x6 x7 x13)(∀ x13 . x0 x13x12 x6 x7 x7 x13)x12 x2 x2 x2 x4x12 x2 x2 x2 x6x12 x2 x2 x3 x2x12 x2 x2 x3 x3x12 x2 x2 x3 x6x12 x2 x2 x4 x4x12 x2 x2 x4 x5x12 x2 x2 x4 x6x12 x2 x2 x5 x3x12 x2 x2 x5 x4x12 x2 x2 x5 x6x12 x2 x2 x6 x4x12 x2 x2 x6 x5x12 x2 x2 x7 x2x12 x2 x2 x7 x4x12 x2 x2 x7 x5x12 x2 x3 x2 x5x12 x2 x3 x2 x7x12 x2 x3 x3 x2x12 x2 x3 x3 x3x12 x2 x3 x3 x7x12 x2 x3 x4 x4x12 x2 x3 x4 x5x12 x2 x3 x4 x7x12 x2 x3 x5 x2x12 x2 x3 x5 x5x12 x2 x3 x5 x7x12 x2 x3 x6 x4x12 x2 x3 x6 x5x12 x2 x3 x7 x3x12 x2 x3 x7 x4x12 x2 x3 x7 x5x12 x2 x4 x2 x7x12 x2 x4 x3 x4x12 x2 x4 x3 x5x12 x2 x4 x3 x6x12 x2 x4 x4 x2x12 x2 x4 x4 x3x12 x2 x4 x4 x6x12 x2 x4 x5 x2x12 x2 x4 x5 x5x12 x2 x4 x5 x7x12 x2 x4 x6 x2x12 x2 x4 x6 x3x12 x2 x4 x7 x2x12 x2 x4 x7 x3x12 x2 x4 x7 x4x12 x2 x5 x2 x6x12 x2 x5 x3 x4x12 x2 x5 x3 x5x12 x2 x5 x3 x7x12 x2 x5 x4 x2x12 x2 x5 x4 x3x12 x2 x5 x4 x7x12 x2 x5 x5 x3x12 x2 x5 x5 x4x12 x2 x5 x5 x6x12 x2 x5 x6 x2x12 x2 x5 x6 x3x12 x2 x5 x7 x2x12 x2 x5 x7 x3x12 x2 x5 x7 x5x12 x2 x6 x3 x3x12 x2 x6 x3 x4x12 x2 x6 x4 x2x12 x2 x6 x4 x5x12 x2 x6 x4 x6x12 x2 x6 x4 x7x12 x2 x6 x5 x2x12 x2 x6 x5 x5x12 x2 x6 x5 x6x12 x2 x6 x5 x7x12 x2 x6 x6 x3x12 x2 x6 x6 x4x12 x2 x6 x7 x6x12 x2 x7 x3 x2x12 x2 x7 x3 x5x12 x2 x7 x4 x3x12 x2 x7 x4 x4x12 x2 x7 x4 x6x12 x2 x7 x4 x7x12 x2 x7 x5 x3x12 x2 x7 x5 x4x12 x2 x7 x5 x6x12 x2 x7 x5 x7x12 x2 x7 x6 x2x12 x2 x7 x6 x5x12 x2 x7 x7 x6x12 x3 x2 x3 x4x12 x3 x2 x3 x7x12 x3 x2 x4 x2x12 x3 x2 x4 x6x12 x3 x2 x5 x3x12 x3 x2 x5 x4x12 x3 x2 x5 x5x12 x3 x2 x5 x6x12 x3 x2 x6 x3x12 x3 x2 x6 x4x12 x3 x2 x6 x7x12 x3 x2 x7 x3x12 x3 x3 x3 x5x12 x3 x3 x3 x6x12 x3 x3 x4 x3x12 x3 x3 x4 x7x12 x3 x3 x5 x2x12 x3 x3 x5 x4x12 x3 x3 x5 x5x12 x3 x3 x5 x7x12 x3 x3 x6 x2x12 x3 x3 x6 x5x12 x3 x3 x6 x6x12 x3 x3 x7 x2x12 x3 x4 x3 x7x12 x3 x4 x4 x4x12 x3 x4 x4 x6x12 x3 x4 x5 x2x12 x3 x4 x5 x3x12 x3 x4 x5 x5x12 x3 x4 x5 x7x12 x3 x4 x6 x2x12 x3 x4 x6 x5x12 x3 x4 x6 x7x12 x3 x4 x7 x5x12 x3 x5 x3 x6x12 x3 x5 x4 x5x12 x3 x5 x4 x7x12 x3 x5 x5 x2x12 x3 x5 x5 x3x12 x3 x5 x5 x4x12 x3 x5 x5 x6x12 x3 x5 x6 x3x12 x3 x5 x6 x4x12 x3 x5 x6 x6x12 x3 x5 x7 x4x12 x3 x6 x3 x7x12 x3 x6 x4 x3x12 x3 x6 x4 x5x12 x3 x6 x5 x6x12 x3 x6 x5 x7x12 x3 x6 x6 x7x12 x3 x6 x7 x3x12 x3 x6 x7 x5x12 x3 x6 x7 x6x12 x3 x7 x4 x2x12 x3 x7 x4 x4x12 x3 x7 x5 x6x12 x3 x7 x5 x7x12 x3 x7 x6 x6x12 x3 x7 x7 x2x12 x3 x7 x7 x4x12 x3 x7 x7 x6x12 x4 x2 x4 x3x12 x4 x2 x4 x6x12 x4 x2 x5 x3x12 x4 x2 x5 x4x12 x4 x2 x5 x7x12 x4 x2 x6 x4x12 x4 x2 x6 x5x12 x4 x2 x7 x4x12 x4 x2 x7 x6x12 x4 x3 x4 x7x12 x4 x3 x5 x2x12 x4 x3 x5 x5x12 x4 x3 x5 x6x12 x4 x3 x6 x4x12 x4 x3 x6 x5x12 x4 x3 x7 x5x12 x4 x3 x7 x6x12 x4 x4 x4 x5x12 x4 x4 x4 x6x12 x4 x4 x5 x2x12 x4 x4 x5 x5x12 x4 x4 x5 x6x12 x4 x4 x6 x2x12 x4 x4 x6 x3x12 x4 x4 x7 x2x12 x4 x4 x7 x6x12 x4 x5 x4 x7x12 x4 x5 x5 x3x12 x4 x5 x5 x4x12 x4 x5 x5 x7x12 x4 x5 x6 x2x12 x4 x5 x6 x3x12 x4 x5 x7 x3x12 x4 x5 x7 x6x12 x4 x6 x2 x7x12 x4 x6 x4 x7x12 x4 x6 x6 x3x12 x4 x6 x6 x5x12 x4 x7 x6 x2x12 x4 x7 x6 x4x12 x5 x2 x5 x3x12 x5 x2 x5 x6x12 x5 x2 x6 x4x12 x5 x2 x6 x7x12 x5 x2 x7 x2x12 x5 x2 x7 x3x12 x5 x2 x7 x6x12 x5 x3 x5 x7x12 x5 x3 x6 x5x12 x5 x3 x6 x6x12 x5 x3 x7 x2x12 x5 x3 x7 x3x12 x5 x3 x7 x6x12 x5 x4 x5 x5x12 x5 x4 x5 x7x12 x5 x4 x6 x2x12 x5 x4 x6 x7x12 x5 x4 x7 x4x12 x5 x4 x7 x5x12 x5 x4 x7 x6x12 x5 x5 x5 x6x12 x5 x5 x6 x3x12 x5 x5 x6 x6x12 x5 x5 x7 x4x12 x5 x5 x7 x5x12 x5 x5 x7 x6x12 x5 x6 x2 x7x12 x5 x6 x3 x7x12 x5 x6 x7 x3x12 x5 x6 x7 x4x12 x5 x7 x7 x2x12 x5 x7 x7 x5x12 x6 x2 x6 x4x12 x6 x2 x6 x5x12 x6 x2 x6 x7x12 x6 x2 x7 x2x12 x6 x2 x7 x3x12 x6 x3 x6 x4x12 x6 x3 x6 x5x12 x6 x3 x6 x6x12 x6 x3 x7 x2x12 x6 x3 x7 x3x12 x6 x4 x6 x7x12 x6 x4 x7 x4x12 x6 x4 x7 x5x12 x6 x5 x6 x6x12 x6 x5 x7 x4x12 x6 x5 x7 x5x12 x6 x6 x3 x7x12 x7 x2 x7 x5x12 x7 x3 x7 x4x12 x7 x6 x2 x7x12 x7 x6 x3 x7x12 x7 x6 x6 x7∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24not (x12 x13 x14 x15 x16)not (x12 x13 x14 x17 x18)not (x12 x13 x14 x19 x20)not (x12 x13 x14 x21 x22)not (x12 x13 x14 x23 x24)not (x12 x15 x16 x17 x18)not (x12 x15 x16 x19 x20)not (x12 x15 x16 x21 x22)not (x12 x15 x16 x23 x24)not (x12 x17 x18 x19 x20)not (x12 x17 x18 x21 x22)not (x12 x17 x18 x23 x24)not (x12 x19 x20 x21 x22)not (x12 x19 x20 x23 x24)not (x12 x21 x22 x23 x24)False
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Param TwoRamseyGraph_4_6_35_b : ιιιιο
Known 1f9f5.. : ∀ x0 . x0u6∀ x1 . x1u6∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6∀ x6 . x6u6∀ x7 . x7u6TwoRamseyGraph_4_6_35_b x0 x1 x2 x3TwoRamseyGraph_4_6_35_b x0 x1 x4 x5TwoRamseyGraph_4_6_35_b x0 x1 x6 x7TwoRamseyGraph_4_6_35_b x2 x3 x4 x5TwoRamseyGraph_4_6_35_b x2 x3 x6 x7TwoRamseyGraph_4_6_35_b x4 x5 x6 x7False
Definition Church6_p := λ x0 : ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 . x2)x1 (λ x2 x3 x4 x5 x6 x7 . x3)x1 (λ x2 x3 x4 x5 x6 x7 . x4)x1 (λ x2 x3 x4 x5 x6 x7 . x5)x1 (λ x2 x3 x4 x5 x6 x7 . x6)x1 (λ x2 x3 x4 x5 x6 x7 . x7)x1 x0
Definition Church6_lt4p := λ x0 : ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 . x2)x1 (λ x2 x3 x4 x5 x6 x7 . x3)x1 (λ x2 x3 x4 x5 x6 x7 . x4)x1 (λ x2 x3 x4 x5 x6 x7 . x5)x1 x0
Definition permargs_i_1_0_3_2_4_5 := λ x0 : ι → ι → ι → ι → ι → ι → ι . λ x1 x2 x3 x4 . x0 x2 x1 x4 x3
Definition Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5 := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι . λ x2 x3 x4 x5 x6 x7 . x0 (permargs_i_1_0_3_2_4_5 x1 x2 x3 x4 x5 x7 x6) (permargs_i_1_0_3_2_4_5 x1 x2 x3 x4 x5 x7 x6) (permargs_i_1_0_3_2_4_5 x1 x2 x3 x4 x5 x7 x6) (permargs_i_1_0_3_2_4_5 x1 x2 x3 x4 x5 x7 x6) (permargs_i_1_0_3_2_4_5 x1 x2 x3 x4 x5 x7 x6) (permargs_i_1_0_3_2_4_5 x1 x2 x3 x4 x5 x6 x7)
Known 3f4a9.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_lt4p x0Church6_lt4p (permargs_i_1_0_3_2_4_5 x0)
Known bc219.. : Church6_lt4p (λ x0 x1 x2 x3 x4 x5 . x1)
Known 39a8c.. : Church6_lt4p (λ x0 x1 x2 x3 x4 x5 . x0)
Known 22a13.. : Church6_lt4p (λ x0 x1 x2 x3 x4 x5 . x3)
Known a050d.. : Church6_lt4p (λ x0 x1 x2 x3 x4 x5 . x2)
Theorem 3a34f.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0∀ x1 : ι → ι → ι → ι → ι → ι → ι . Church6_lt4p x1Church6_lt4p (Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5 x0 x1) (proof)
Definition permargs_i_2_3_0_1_4_5 := λ x0 : ι → ι → ι → ι → ι → ι → ι . λ x1 x2 x3 x4 . x0 x3 x4 x1 x2
Definition Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι . λ x2 x3 x4 x5 x6 x7 . x0 (permargs_i_2_3_0_1_4_5 x1 x2 x3 x4 x5 x7 x6) (permargs_i_2_3_0_1_4_5 x1 x2 x3 x4 x5 x6 x7) (permargs_i_2_3_0_1_4_5 x1 x2 x3 x4 x5 x6 x7) (permargs_i_2_3_0_1_4_5 x1 x2 x3 x4 x5 x7 x6) (permargs_i_2_3_0_1_4_5 x1 x2 x3 x4 x5 x6 x7) (permargs_i_2_3_0_1_4_5 x1 x2 x3 x4 x5 x6 x7)
Known bc9c2.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_lt4p x0Church6_lt4p (permargs_i_2_3_0_1_4_5 x0)
Theorem ca554.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0∀ x1 : ι → ι → ι → ι → ι → ι → ι . Church6_lt4p x1Church6_lt4p (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 x0 x1) (proof)
Definition permargs_i_3_2_1_0_4_5 := λ x0 : ι → ι → ι → ι → ι → ι → ι . λ x1 x2 x3 x4 . x0 x4 x3 x2 x1
Definition Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι . λ x2 x3 x4 x5 x6 x7 . x0 (permargs_i_3_2_1_0_4_5 x1 x2 x3 x4 x5 x6 x7) (permargs_i_3_2_1_0_4_5 x1 x2 x3 x4 x5 x7 x6) (permargs_i_3_2_1_0_4_5 x1 x2 x3 x4 x5 x7 x6) (permargs_i_3_2_1_0_4_5 x1 x2 x3 x4 x5 x6 x7) (permargs_i_3_2_1_0_4_5 x1 x2 x3 x4 x5 x7 x6) (permargs_i_3_2_1_0_4_5 x1 x2 x3 x4 x5 x6 x7)
Known bcfec.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_lt4p x0Church6_lt4p (permargs_i_3_2_1_0_4_5 x0)
Theorem 5bea3.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0∀ x1 : ι → ι → ι → ι → ι → ι → ι . Church6_lt4p x1Church6_lt4p (Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 x0 x1) (proof)
Definition TwoRamseyGraph_4_6_Church6_squared_a := λ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . λ x4 x5 . x0 (x1 (x2 (x3 x4 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x4 x5 x4 x4 x5 x4)) (x2 (x3 x5 x4 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x4 x4 x4 x5 x4)) (x2 (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x4)) (x2 (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x5 x4)) (x2 (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4)) (x2 (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4))) (x1 (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x5 x5 x4) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x4 x5 x5 x5 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x5 x4 x5 x4)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4)) (x2 (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x4) (x3 x5 x4 x5 x4 x4 x4)) (x2 (x3 x5 x4 x5 x4 x5 x5) (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x5) (x3 x4 x5 x4 x5 x4 x4))) (x1 (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x4)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x5 x4 x4 x4)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x5 x5 x5 x4 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x5 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x5 x4)) (x2 (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x4))) (x1 (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x5 x4 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x4)) (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x4)) (x2 (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x4))) (x1 (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x4 x4 x4 x4 x4 x4)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x4 x4 x4 x4 x4 x4))) (x1 (x2 (x3 x4 x5 x4 x4 x5 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x4)) (x2 (x3 x5 x4 x4 x4 x5 x5) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x4) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x4 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x4 x4 x5 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x4 x4 x4) (x3 x4 x5 x5 x4 x5 x4)) (x2 (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4) (x3 x4 x4 x4 x4 x5 x5) (x3 x4 x4 x4 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4)) (x2 (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4)))
Param nth_6_tuple : ιιιιιιιι
Definition TwoRamseyGraph_4_6_35_a := λ x0 x1 x2 x3 . TwoRamseyGraph_4_6_Church6_squared_a (nth_6_tuple x0) (nth_6_tuple x1) (nth_6_tuple x2) (nth_6_tuple x3) = λ x5 x6 . x5
Param In2_lexicographic : ιιιιο
Definition Church6_to_u6 := λ x0 : ι → ι → ι → ι → ι → ι → ι . x0 0 u1 u2 u3 u4 u5
Definition u6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5 := λ x0 x1 . Church6_to_u6 (Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5 (nth_6_tuple x0) (nth_6_tuple x1))
Definition u6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 := λ x0 x1 . Church6_to_u6 (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 (nth_6_tuple x0) (nth_6_tuple x1))
Definition u6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 := λ x0 x1 . Church6_to_u6 (Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 (nth_6_tuple x0) (nth_6_tuple x1))
Known In_0_6In_0_6 : 0u6
Known In_1_6In_1_6 : u1u6
Known In_2_6In_2_6 : u2u6
Known In_3_6In_3_6 : u3u6
Known In_4_6In_4_6 : u4u6
Known In_5_6In_5_6 : u5u6
Known In_0_4In_0_4 : 04
Known In_1_4In_1_4 : 14
Known In_2_4In_2_4 : 24
Known In_3_4In_3_4 : 34
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known In_4_5In_4_5 : 45
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known neq_1_0neq_1_0 : u1 = 0∀ x0 : ο . x0
Known neq_2_0neq_2_0 : u2 = 0∀ x0 : ο . x0
Known neq_3_0neq_3_0 : u3 = 0∀ x0 : ο . x0
Known neq_4_0neq_4_0 : u4 = 0∀ x0 : ο . x0
Known neq_5_0neq_5_0 : u5 = 0∀ x0 : ο . x0
Known neq_2_1neq_2_1 : u2 = u1∀ x0 : ο . x0
Known neq_3_1neq_3_1 : u3 = u1∀ x0 : ο . x0
Known neq_4_1neq_4_1 : u4 = u1∀ x0 : ο . x0
Known neq_5_1neq_5_1 : u5 = u1∀ x0 : ο . x0
Known neq_3_2neq_3_2 : u3 = u2∀ x0 : ο . x0
Known neq_4_2neq_4_2 : u4 = u2∀ x0 : ο . x0
Known neq_5_2neq_5_2 : u5 = u2∀ x0 : ο . x0
Known neq_4_3neq_4_3 : u4 = u3∀ x0 : ο . x0
Known neq_5_3neq_5_3 : u5 = u3∀ x0 : ο . x0
Known neq_5_4neq_5_4 : u5 = u4∀ x0 : ο . x0
Known e1c62.. : ∀ x0 . x0u6∀ x1 . x1u6u6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5 x0 (u6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5 x0 x1) = x1
Known d47b4.. : ∀ x0 . x0u6∀ x1 . x1u6u6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 x0 (u6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 x0 x1) = x1
Known 23ec1.. : ∀ x0 . x0u6∀ x1 . x1u6u6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 x0 (u6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 x0 x1) = x1
Known 94e96.. : ∀ x0 x1 . not (In2_lexicographic x0 x1 x0 x1)
Known 6f0f0.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u1 x1 0)
Known 1b2aa.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u2 x1 0)
Known 829cc.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u3 x1 0)
Known 1c740.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u4 x1 0)
Known 196b9.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u5 x1 0)
Known 97a37.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u2 x1 u1)
Known b27e1.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u3 x1 u1)
Known 52c59.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u4 x1 u1)
Known 2efb1.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u5 x1 u1)
Known 696a1.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u3 x1 u2)
Known dd794.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u4 x1 u2)
Known dd382.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u5 x1 u2)
Known ffa46.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u4 x1 u3)
Known e28f6.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u5 x1 u3)
Known 1f4d3.. : ∀ x0 . x0u6∀ x1 . x1u6not (In2_lexicographic x0 u5 x1 u4)
Known b5ca8.. : ∀ x0 . x0u6not (In2_lexicographic 0 x0 0 x0)
Known 15042.. : ∀ x0 . x0u6not (In2_lexicographic u1 x0 0 x0)
Known 4ed6e.. : ∀ x0 . x0u6not (In2_lexicographic u2 x0 0 x0)
Known aa680.. : ∀ x0 . x0u6not (In2_lexicographic u3 x0 0 x0)
Known be2c5.. : ∀ x0 . x0u6not (In2_lexicographic u4 x0 0 x0)
Known fb400.. : ∀ x0 . x0u6not (In2_lexicographic u5 x0 0 x0)
Known 69e13.. : ∀ x0 . x0u6not (In2_lexicographic u1 x0 u1 x0)
Known b695a.. : ∀ x0 . x0u6not (In2_lexicographic u2 x0 u1 x0)
Known e7d59.. : ∀ x0 . x0u6not (In2_lexicographic u3 x0 u1 x0)
Known a3e6e.. : ∀ x0 . x0u6not (In2_lexicographic u4 x0 u1 x0)
Known dadcc.. : ∀ x0 . x0u6not (In2_lexicographic u5 x0 u1 x0)
Known 05e9c.. : ∀ x0 . x0u6not (In2_lexicographic u2 x0 u2 x0)
Known a73b8.. : ∀ x0 . x0u6not (In2_lexicographic u3 x0 u2 x0)
Known b6f90.. : ∀ x0 . x0u6not (In2_lexicographic u4 x0 u2 x0)
Known 6bc25.. : ∀ x0 . x0u6not (In2_lexicographic u5 x0 u2 x0)
Known 52f87.. : ∀ x0 . x0u6not (In2_lexicographic u3 x0 u3 x0)
Known dc51f.. : ∀ x0 . x0u6not (In2_lexicographic u4 x0 u3 x0)
Known 447d5.. : ∀ x0 . x0u6not (In2_lexicographic u5 x0 u3 x0)
Known a58bd.. : ∀ x0 . x0u6not (In2_lexicographic u4 x0 u4 x0)
Known 2313b.. : ∀ x0 . x0u6not (In2_lexicographic u5 x0 u4 x0)
Known 56b5c.. : ∀ x0 . x0u6not (In2_lexicographic u5 x0 u5 x0)
Known 2e599.. : ∀ x0 . x0u6TwoRamseyGraph_4_6_35_a u4 u4 u5 x0
Known ff9a1.. : ∀ x0 . x0u6TwoRamseyGraph_4_6_35_a u4 u5 u5 x0
Known 33924.. : nth_6_tuple u4 = λ x1 x2 x3 x4 x5 x6 . x5
Known fed6d.. : nth_6_tuple u5 = λ x1 x2 x3 x4 x5 x6 . x6
Known a7cad.. : nth_6_tuple u1 = λ x1 x2 x3 x4 x5 x6 . x2
Known a1243.. : nth_6_tuple 0 = λ x1 x2 x3 x4 x5 x6 . x1
Known a0d60.. : nth_6_tuple u2 = λ x1 x2 x3 x4 x5 x6 . x3
Known 89684.. : nth_6_tuple u3 = λ x1 x2 x3 x4 x5 x6 . x4
Known e2503.. : ∀ x0 . x0u6∀ x1 . x1u6∀ x2 . x2u6∀ x3 . x3u6TwoRamseyGraph_4_6_35_a x0 x1 x2 x3TwoRamseyGraph_4_6_35_a x0 (u6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 x0 x1) x2 (u6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 x2 x3)
Known e77b8.. : ∀ x0 . x0u6∀ x1 . x1u6∀ x2 . x2u6∀ x3 . x3u6TwoRamseyGraph_4_6_35_a x0 x1 x2 x3TwoRamseyGraph_4_6_35_a x0 (u6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 x0 x1) x2 (u6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 x2 x3)
Known 08bf6.. : ∀ x0 . x0u6∀ x1 . x1u6∀ x2 . x2u6∀ x3 . x3u6TwoRamseyGraph_4_6_35_a x0 x1 x2 x3TwoRamseyGraph_4_6_35_a x0 (u6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5 x0 x1) x2 (u6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5 x2 x3)
Known aaf54.. : ∀ x0 . x0u6∀ x1 . x1u6TwoRamseyGraph_4_6_35_a x0 x1 u5 u5
Known dd147.. : ∀ x0 . x0u6∀ x1 . x1u6∀ x2 . x2u6∀ x3 . x3u6TwoRamseyGraph_4_6_35_a x0 x1 x2 x3TwoRamseyGraph_4_6_35_a x2 x3 x0 x1
Known dd650.. : ∀ x0 . x0u6∀ x1 . x1u6TwoRamseyGraph_4_6_35_a x0 x1 x0 x1
Param TransSetTransSet : ιο
Known 65c2b.. : ∀ x0 x1 x2 x3 x4 x5 . TransSet x4TransSet x5In2_lexicographic x0 x1 x2 x3In2_lexicographic x2 x3 x4 x5In2_lexicographic x0 x1 x4 x5
Param ordinalordinal : ιο
Known ordinal_In_TransSetordinal_In_TransSet : ∀ x0 . ordinal x0∀ x1 . x1x0TransSet x1
Param nat_pnat_p : ιο
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known nat_6nat_6 : nat_p 6
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known 67627.. : ∀ x0 . x0u6∀ x1 . x1u6∀ x2 . x2u6∀ x3 . x3u6not (TwoRamseyGraph_4_6_35_a x0 x1 x2 x3)or (In2_lexicographic x0 x1 x2 x3) (In2_lexicographic x2 x3 x0 x1)
Known 6629a.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_lt4p x0Church6_to_u6 x0u4
Known 3b8c0.. : ∀ x0 . x0u6Church6_p (nth_6_tuple x0)
Known c3ac2.. : ∀ x0 . x0u4Church6_lt4p (nth_6_tuple x0)
Known 38ba0.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0Church6_to_u6 x0u6
Known 58601.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0∀ x1 : ι → ι → ι → ι → ι → ι → ι . Church6_p x1Church6_p (Church6_squared_permutation__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5__3_2_1_0_4_5 x0 x1)
Known cc59f.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0∀ x1 : ι → ι → ι → ι → ι → ι → ι . Church6_p x1Church6_p (Church6_squared_permutation__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5__2_3_0_1_4_5 x0 x1)
Known 0dc4b.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0∀ x1 : ι → ι → ι → ι → ι → ι → ι . Church6_p x1Church6_p (Church6_squared_permutation__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5__1_0_3_2_4_5 x0 x1)
Known 3f697.. : ∀ x0 . x0u6∀ x1 . x1u6In2_lexicographic x0 0 x1 u4
Known 03171.. : ∀ x0 . x0u6∀ x1 . x1u6In2_lexicographic x0 0 x1 u5
Known be5f9.. : ∀ x0 . x0u6∀ x1 . x1u6In2_lexicographic x0 u1 x1 u4
Known 9750a.. : ∀ x0 . x0u6∀ x1 . x1u6In2_lexicographic x0 u1 x1 u5
Known 952f7.. : ∀ x0 . x0u6∀ x1 . x1u6In2_lexicographic x0 u2 x1 u4
Known f1e9b.. : ∀ x0 . x0u6∀ x1 . x1u6In2_lexicographic x0 u2 x1 u5
Known e60e7.. : ∀ x0 . x0u6∀ x1 . x1u6In2_lexicographic x0 u3 x1 u4
Known b30df.. : ∀ x0 . x0u6∀ x1 . x1u6In2_lexicographic x0 u3 x1 u5
Known FalseEFalseE : False∀ x0 : ο . x0
Known cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0
Known cases_6cases_6 : ∀ x0 . x0u6∀ x1 : ι → ο . x1 0x1 u1x1 u2x1 u3x1 u4x1 u5x1 x0
Known 768c1.. : ((λ x1 x2 . x2) = λ x1 x2 . x1)∀ x0 : ο . x0
Theorem 2112e.. : ∀ x0 . x0u6∀ x1 . x1u6∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6∀ x6 . x6u6∀ x7 . x7u6∀ x8 . x8u6∀ x9 . x9u6∀ x10 . x10u6∀ x11 . x11u6not (TwoRamseyGraph_4_6_35_a x0 x1 x2 x3)not (TwoRamseyGraph_4_6_35_a x0 x1 x4 x5)not (TwoRamseyGraph_4_6_35_a x0 x1 x6 x7)not (TwoRamseyGraph_4_6_35_a x0 x1 x8 x9)not (TwoRamseyGraph_4_6_35_a x0 x1 x10 x11)not (TwoRamseyGraph_4_6_35_a x2 x3 x4 x5)not (TwoRamseyGraph_4_6_35_a x2 x3 x6 x7)not (TwoRamseyGraph_4_6_35_a x2 x3 x8 x9)not (TwoRamseyGraph_4_6_35_a x2 x3 x10 x11)not (TwoRamseyGraph_4_6_35_a x4 x5 x6 x7)not (TwoRamseyGraph_4_6_35_a x4 x5 x8 x9)not (TwoRamseyGraph_4_6_35_a x4 x5 x10 x11)not (TwoRamseyGraph_4_6_35_a x6 x7 x8 x9)not (TwoRamseyGraph_4_6_35_a x6 x7 x10 x11)not (TwoRamseyGraph_4_6_35_a x8 x9 x10 x11)False (proof)
Param TwoRamseyPropTwoRamseyProp : ιιιο
Known df3e1.. : ∀ x0 x1 : ι → ι → ι → ι → ο . (∀ x2 x3 x4 x5 . x0 x2 x3 x4 x5x0 x4 x5 x2 x3)(∀ x2 . x2u6∀ x3 . x3u6not (x0 x2 x3 x2 x3))(∀ x2 . x2u6∀ x3 . x3u6x1 x2 x3 x2 x3)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6(x2 = u5x3 = u5False)(x4 = u5x5 = u5False)x0 x2 x3 x4 x5x1 x2 x3 x4 x5)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6(x2 = u5x3 = u5False)(x4 = u5x5 = u5False)(x2 = x4x3 = x5False)x1 x2 x3 x4 x5x0 x2 x3 x4 x5)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6∀ x6 . x6u6∀ x7 . x7u6∀ x8 . x8u6∀ x9 . x9u6x0 x2 x3 x4 x5x0 x2 x3 x6 x7x0 x2 x3 x8 x9x0 x4 x5 x6 x7x0 x4 x5 x8 x9x0 x6 x7 x8 x9False)(∀ x2 . x2u6∀ x3 . x3u6∀ x4 . x4u6∀ x5 . x5u6∀ x6 . x6u6∀ x7 . x7u6∀ x8 . x8u6∀ x9 . x9u6∀ x10 . x10u6∀ x11 . x11u6∀ x12 . x12u6∀ x13 . x13u6not (x1 x2 x3 x4 x5)not (x1 x2 x3 x6 x7)not (x1 x2 x3 x8 x9)not (x1 x2 x3 x10 x11)not (x1 x2 x3 x12 x13)not (x1 x4 x5 x6 x7)not (x1 x4 x5 x8 x9)not (x1 x4 x5 x10 x11)not (x1 x4 x5 x12 x13)not (x1 x6 x7 x8 x9)not (x1 x6 x7 x10 x11)not (x1 x6 x7 x12 x13)not (x1 x8 x9 x10 x11)not (x1 x8 x9 x12 x13)not (x1 x10 x11 x12 x13)False)not (TwoRamseyProp 4 6 35)
Known a3e36.. : ∀ x0 x1 x2 x3 . TwoRamseyGraph_4_6_35_b x0 x1 x2 x3TwoRamseyGraph_4_6_35_b x2 x3 x0 x1
Known c0174.. : ∀ x0 . x0u6∀ x1 . x1u6not (TwoRamseyGraph_4_6_35_b x0 x1 x0 x1)
Known 76062.. : ∀ x0 . x0u6∀ x1 . x1u6∀ x2 . x2u6∀ x3 . x3u6(x0 = u5x1 = u5False)(x2 = u5x3 = u5False)TwoRamseyGraph_4_6_35_b x0 x1 x2 x3TwoRamseyGraph_4_6_35_a x0 x1 x2 x3
Known 1fefd.. : ∀ x0 . x0u6∀ x1 . x1u6∀ x2 . x2u6∀ x3 . x3u6(x0 = u5x1 = u5False)(x2 = u5x3 = u5False)(x0 = x2x1 = x3False)TwoRamseyGraph_4_6_35_a x0 x1 x2 x3TwoRamseyGraph_4_6_35_b x0 x1 x2 x3
Theorem not_TwoRamseyProp_4_6_35not_TwoRamseyProp_4_6_35 : not (TwoRamseyProp 4 6 35) (proof)
Param equipequip : ιιο
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Definition u17 := ordsucc u16
Definition u18 := ordsucc u17
Definition u19 := ordsucc u18
Definition u20 := ordsucc u19
Definition u21 := ordsucc u20
Definition u22 := ordsucc u21
Definition u23 := ordsucc u22
Definition u24 := ordsucc u23
Definition u25 := ordsucc u24
Definition u26 := ordsucc u25
Definition u27 := ordsucc u26
Definition u28 := ordsucc u27
Definition u29 := ordsucc u28
Definition u30 := ordsucc u29
Definition u31 := ordsucc u30
Definition u32 := ordsucc u31
Param exp_natexp_nat : ιιι
Known e089c.. : exp_nat 2 5 = 32
Known 293d3.. : ∀ x0 . nat_p x0equip (prim4 x0) (exp_nat 2 x0)
Known nat_5nat_5 : nat_p 5
Theorem 2b2ae.. : equip (prim4 u5) u32 (proof)
Param atleastpatleastp : ιιο
Definition u33 := ordsucc u32
Definition u34 := ordsucc u33
Definition u35 := ordsucc u34
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known nat_In_atleastp : ∀ x0 . nat_p x0∀ x1 . x1x0atleastp x1 x0
Known 966a2.. : nat_p u35
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem dbdae.. : atleastp (prim4 u5) u35 (proof)
Known 46dcf.. : ∀ x0 x1 x2 x3 . atleastp x2 x3TwoRamseyProp x0 x1 x2TwoRamseyProp x0 x1 x3
Theorem not_TwoRamseyProp_4_6_Power_5not_TwoRamseyProp_4_6_Power_5 : not (TwoRamseyProp 4 6 (prim4 5)) (proof)
Param TwoRamseyProp_atleastp : ιιιο
Known b8b19.. : ∀ x0 x1 x2 . TwoRamseyProp_atleastp x0 x1 x2TwoRamseyProp x0 x1 x2
Known TwoRamseyProp_atleastp_atleastp : ∀ x0 x1 x2 x3 x4 . TwoRamseyProp x0 x2 x4atleastp x1 x0atleastp x3 x2TwoRamseyProp_atleastp x1 x3 x4
Known atleastp_ref : ∀ x0 . atleastp x0 x0
Known nat_7nat_7 : nat_p 7
Known In_6_7In_6_7 : 67
Theorem not_TwoRamseyProp_4_7_Power_5not_TwoRamseyProp_4_7_Power_5 : not (TwoRamseyProp 4 7 (prim4 5)) (proof)
Known nat_8nat_8 : nat_p 8
Known In_7_8In_7_8 : 78
Theorem not_TwoRamseyProp_4_8_Power_5not_TwoRamseyProp_4_8_Power_5 : not (TwoRamseyProp 4 8 (prim4 5)) (proof)
Known nat_9nat_9 : nat_p 9
Known In_8_9In_8_9 : 89
Theorem not_TwoRamseyProp_4_9_Power_5not_TwoRamseyProp_4_9_Power_5 : not (TwoRamseyProp 4 9 (prim4 5)) (proof)
Theorem not_TwoRamseyProp_5_6_Power_5not_TwoRamseyProp_5_6_Power_5 : not (TwoRamseyProp 5 6 (prim4 5)) (proof)
Theorem not_TwoRamseyProp_5_7_Power_5not_TwoRamseyProp_5_7_Power_5 : not (TwoRamseyProp 5 7 (prim4 5)) (proof)
Theorem not_TwoRamseyProp_5_8_Power_5not_TwoRamseyProp_5_8_Power_5 : not (TwoRamseyProp 5 8 (prim4 5)) (proof)
Theorem not_TwoRamseyProp_6_6_Power_5not_TwoRamseyProp_6_6_Power_5 : not (TwoRamseyProp 6 6 (prim4 5)) (proof)
Theorem not_TwoRamseyProp_6_7_Power_5not_TwoRamseyProp_6_7_Power_5 : not (TwoRamseyProp 6 7 (prim4 5)) (proof)

previous assets