Search for blocks/addresses/...
Proofgold Address
address
PUUcinYBMV1viCi2g7NQqvL9AVfCUyVK48y
total
0
mg
-
conjpub
-
current assets
30fce..
/
70f68..
bday:
1149
doc published by
PrGxv..
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
91bfe..
dnegI
:
∀ x0 : ο .
x0
⟶
not
(
not
x0
)
(proof)
Known
5f92b..
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
(proof)
Known
47706..
xmcases
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
x1
Theorem
0a8dd..
keepcopy
:
∀ x0 : ο .
(
not
x0
⟶
x0
)
⟶
x0
(proof)
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
3f786..
orI_contra
:
∀ x0 x1 : ο .
(
not
x0
⟶
not
x1
⟶
False
)
⟶
or
x0
x1
(proof)
Theorem
d47b4..
orI_imp1
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
or
(
not
x0
)
x1
(proof)
Theorem
d5b81..
orI_imp2
:
∀ x0 x1 : ο .
(
x1
⟶
x0
)
⟶
or
x0
(
not
x1
)
(proof)
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
57def..
tab_pos_and
:
∀ x0 x1 : ο .
and
x0
x1
⟶
(
x0
⟶
x1
⟶
False
)
⟶
False
(proof)
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
26b88..
tab_pos_or
:
∀ x0 x1 : ο .
or
x0
x1
⟶
(
x0
⟶
False
)
⟶
(
x1
⟶
False
)
⟶
False
(proof)
Theorem
7ffa0..
tab_pos_imp
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
not
x0
⟶
False
)
⟶
(
x1
⟶
False
)
⟶
False
(proof)
Known
d182e..
iffE
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
(
not
x0
⟶
not
x1
⟶
x2
)
⟶
x2
Theorem
a19af..
tab_pos_iff
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
(
x0
⟶
x1
⟶
False
)
⟶
(
not
x0
⟶
not
x1
⟶
False
)
⟶
False
(proof)
Theorem
c44ec..
tab_neg_imp
:
∀ x0 x1 : ο .
not
(
x0
⟶
x1
)
⟶
(
x0
⟶
not
x1
⟶
False
)
⟶
False
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
77eb0..
tab_neg_and
:
∀ x0 x1 : ο .
not
(
and
x0
x1
)
⟶
(
not
x0
⟶
False
)
⟶
(
not
x1
⟶
False
)
⟶
False
(proof)
Theorem
6a5f4..
tab_neg_or
:
∀ x0 x1 : ο .
not
(
or
x0
x1
)
⟶
(
not
x0
⟶
not
x1
⟶
False
)
⟶
False
(proof)
Known
32c82..
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
b2d9e..
tab_neg_iff
:
∀ x0 x1 : ο .
not
(
iff
x0
x1
)
⟶
(
x0
⟶
not
x1
⟶
False
)
⟶
(
not
x0
⟶
x1
⟶
False
)
⟶
False
(proof)
Known
2540e..
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Theorem
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
(proof)
Theorem
30c0c..
eqo_iff
:
∀ x0 x1 : ο .
x0
=
x1
⟶
iff
x0
x1
(proof)
Theorem
d0d7f..
tab_pos_eqo
:
∀ x0 x1 : ο .
x0
=
x1
⟶
(
x0
⟶
x1
⟶
False
)
⟶
(
not
x0
⟶
not
x1
⟶
False
)
⟶
False
(proof)
Theorem
7a33c..
tab_neg_eqo
:
∀ x0 x1 : ο .
not
(
x0
=
x1
)
⟶
(
x0
⟶
not
x1
⟶
False
)
⟶
(
not
x0
⟶
x1
⟶
False
)
⟶
False
(proof)
Theorem
b4c6f..
tab_pos_all_i
:
∀ x0 :
ι → ο
.
∀ x1 .
(
∀ x2 .
x0
x2
)
⟶
(
x0
x1
⟶
False
)
⟶
False
(proof)
Theorem
29614..
tab_neg_all_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 .
x0
x1
)
⟶
(
∀ x1 .
not
(
x0
x1
)
⟶
False
)
⟶
False
(proof)
Theorem
2f8d2..
tab_pos_ex_i
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 .
x0
x1
⟶
False
)
⟶
False
(proof)
Theorem
2f8d2..
tab_pos_ex_i
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 .
x0
x1
⟶
False
)
⟶
False
(proof)
Theorem
18cb3..
tab_mat_i_o
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
x0
x1
⟶
not
(
x0
x2
)
⟶
(
not
(
x1
=
x2
)
⟶
False
)
⟶
False
(proof)
Theorem
8c503..
tab_mat_i_i_o
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 x4 .
x0
x1
x2
⟶
not
(
x0
x3
x4
)
⟶
(
not
(
x1
=
x3
)
⟶
False
)
⟶
(
not
(
x2
=
x4
)
⟶
False
)
⟶
False
(proof)
Theorem
2b3a3..
tab_confront
:
∀ x0 x1 x2 x3 .
x0
=
x1
⟶
not
(
x2
=
x3
)
⟶
(
not
(
x0
=
x2
)
⟶
not
(
x1
=
x2
)
⟶
False
)
⟶
(
not
(
x0
=
x3
)
⟶
not
(
x1
=
x3
)
⟶
False
)
⟶
False
(proof)
Theorem
f_eq_i
f_equal_i_i
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
x1
=
x2
⟶
x0
x1
=
x0
x2
(proof)
Theorem
31719..
tab_dec_i
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
not
(
x0
x1
=
x0
x2
)
⟶
(
not
(
x1
=
x2
)
⟶
False
)
⟶
False
(proof)
Theorem
f_eq_i_i
f_equal_i_i_i
:
∀ x0 :
ι →
ι → ι
.
∀ x1 x2 x3 x4 .
x1
=
x2
⟶
x3
=
x4
⟶
x0
x1
x3
=
x0
x2
x4
(proof)
Theorem
06083..
tab_dec_i_i
:
∀ x0 :
ι →
ι → ι
.
∀ x1 x2 x3 x4 .
not
(
x0
x1
x3
=
x0
x2
x4
)
⟶
(
not
(
x1
=
x2
)
⟶
False
)
⟶
(
not
(
x3
=
x4
)
⟶
False
)
⟶
False
(proof)
Theorem
3f27c..
tab_pos_eqf_i_i
:
∀ x0 x1 :
ι → ι
.
∀ x2 .
x0
=
x1
⟶
(
x0
x2
=
x1
x2
⟶
False
)
⟶
False
(proof)
Theorem
48643..
tab_pos_neqf_i_i
:
∀ x0 x1 :
ι → ι
.
not
(
x0
=
x1
)
⟶
(
∀ x2 .
not
(
x0
x2
=
x1
x2
)
⟶
False
)
⟶
False
(proof)
previous assets