current assets |
---|
23304../35a8b.. bday: 39322 doc published by Pr4zB..Param 4006a.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam fc090.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 07c0f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 0076f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam adf05.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam d5d69.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 3f98b.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 96c31.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 54c7d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 130d9.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 4e6fe.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a62c3.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ceccf.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam eb506.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 70755.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 97793.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam aa64f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 83aec.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 446f4.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ba015.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 286f8.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 2c550.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f842a.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam e9fc9.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 010eb.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam fa0f3.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam c7001.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 58722.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 84d91.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 90d0e.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 81d98.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 30a11.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 076b3.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 3d3e7.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 14be0.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 4e91d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 23b40.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 1a9fd.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam e2ec9.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam c480f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 0db75.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 02471.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 1cf57.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 23926.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b19dd.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 2eb4b.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam bce5f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 73f36.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 94ee4.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 811c0.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 96162.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 0768d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 70a3c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 2122d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 39c17.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ee5b5.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 61b2a.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam abda1.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 858d1.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 22b3a.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 723e0.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 1ecf8.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 915dd.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 58208.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b571f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 7e5de.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a3794.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 093ca.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 34ae8.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 65996.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 45286.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b7a83.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 72d65.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b7e1a.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 4b4dd.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f4940.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 682ac.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 5f6ee.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a2b8b.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam e2fd7.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 05a8c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f5da9.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam de118.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b43ab.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 627df.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam c2e8a.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam aa358.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 093ad.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam bacd8.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 2bb2a.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 803e1.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f9a67.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 76a6c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 7f17b.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam cc7e8.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 3a6bc.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ad740.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 9aef0.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 30182.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam d2a2c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a94a5.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 92dea.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 8be9f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 4e4f8.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 37e04.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f7902.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ab042.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a2064.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 8c9ed.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ee649.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 61fc8.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ed012.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam d68bd.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam d0e1f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 1e021.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 989b4.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 6e051.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam d92ce.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam e5063.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 228c9.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a3e51.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam c705c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 38793.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam e13e5.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ef237.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 3c50c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 7cafd.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 72e0a.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a4abc.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a40ae.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b1702.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f444d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 55a3e.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 8c70b.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 17819.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 53f52.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 07fce.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 86fe8.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam fb47b.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 055d9.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 13b7c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 2bf4d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam cf078.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a0d70.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 2e1d5.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 729bd.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam e1aab.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 241b0.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 8fbce.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 6661c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a9907.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 824ef.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 8f55d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 22bb5.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 654b9.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 53286.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b8d2a.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam e5024.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f0823.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 62e18.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 49901.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam dc830.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ed1c7.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam df50d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 176ba.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 9f93b.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 91ca0.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 23b03.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 00b44.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 62e18.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 49901.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ dc830.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ed1c7.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ df50d.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 176ba.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 9f93b.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 91ca0.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 23b03.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param 496a0.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 2ffc8.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam e8ba7.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b4c31.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 1a9c5.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam bfd4f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam d0980.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam bc2c6.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 66709.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 496a0.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 2ffc8.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ e8ba7.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ b4c31.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 1a9c5.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ bfd4f.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ d0980.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ bc2c6.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param 06d7e.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b0749.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 87273.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b0e38.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f3db6.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 21189.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition aad31.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 1a9c5.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 06d7e.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ b0749.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 496a0.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 87273.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ b0e38.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ f3db6.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 21189.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param d0e7c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f630d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 9a66e.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 93f0f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 2dac5.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 3fca5.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ef324.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 4ee07.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ d0e7c.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ f630d.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 9a66e.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 93f0f.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 2dac5.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ bfd4f.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 3fca5.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ef324.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param c4d5c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam dcb32.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam d3618.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam dbf71.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam e37fb.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 78a44.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam af5b6.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition ba478.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ c4d5c.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ dcb32.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ d3618.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ dbf71.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ e37fb.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 78a44.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ af5b6.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param a7e88.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 59632.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 79ee1.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f6312.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam fa2d0.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition a1298.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 78a44.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ c4d5c.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ a7e88.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 59632.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 79ee1.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ f6312.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ fa2d0.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param dd43e.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 4818f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 4d3d7.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam a1497.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 4086f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 0d367.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ dd43e.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 4818f.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 4d3d7.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ a1497.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 4086f.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param 44916.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 8acce.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam b47d4.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 74622.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 0788d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 5963b.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 44916.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 8acce.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ b47d4.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 74622.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 0788d.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param fa661.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 255f4.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam c8a3f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 0a634.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 74622.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ fa661.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 44916.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 255f4.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ c8a3f.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param 2bad0.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 2feec.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 0788d.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 2bad0.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ fa661.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 44916.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ c8a3f.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param d2e51.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 76e3a.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 9eede.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ba960.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 74a95.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 465a4.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ d2e51.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 76e3a.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 9eede.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ba960.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 74a95.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param 59a16.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 94f0c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 923e2.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 1b69c.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam cec27.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 24cfd.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 59a16.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 94f0c.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 923e2.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 1b69c.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ cec27.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param 889b5.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 71ae3.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam df026.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 6bc75.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 43a9d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 216e5.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 889b5.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 71ae3.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ df026.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 6bc75.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ 43a9d.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 ⟶ x2) ⟶ x2Param 4402e.. : ι → (ι → ι → ο) → οParam cf2df.. : ι → (ι → ι → ο) → οParam SubqSubq : ι → ι → οParam setminussetminus : ι → ι → ιParam SingSing : ι → ιParam 5bab1.. : ι → (ι → ι → ο) → οKnown 70d6f.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 4006a.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 5e8a4.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ fc090.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 629c2.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 07c0f.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 58605.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ 0076f.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . x13Known 176e1.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ adf05.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 13c6c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ d5d69.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 158a2.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 3f98b.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 0a416.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 96c31.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 3d567.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 54c7d.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known be036.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 130d9.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 6110e.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 4e6fe.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 1b89c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ a62c3.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known bf274.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ ceccf.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known d3d64.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ eb506.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 79b20.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 70755.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 86d7f.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 97793.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 4ee2c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ aa64f.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 53ca8.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 83aec.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 7cfa2.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 446f4.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 75ae5.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 496a0.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 774bc.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 2ffc8.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 128ce.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ e8ba7.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 22120.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ b4c31.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known d08d7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 1a9c5.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 8fa6b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ bfd4f.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 9ce91.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ d0980.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 09417.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ bc2c6.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Theorem a96e6.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ 66709.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known e9a54.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 06d7e.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 947d7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ b0749.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known aafc2.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 87273.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known e0719.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ b0e38.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known f1358.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ f3db6.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 7c096.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 21189.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Theorem b2758.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ aad31.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known 54a2e.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ d0e7c.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 94de4.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ f630d.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known b25e2.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 9a66e.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 7cd66.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 93f0f.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known e2134.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 2dac5.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 9cd37.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 3fca5.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 4cb2c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ ef324.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Theorem 2a1d3.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ 4ee07.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known 6e509.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ c4d5c.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 3a774.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ dcb32.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 50ee3.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ d3618.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 7f4ca.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ dbf71.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 08f06.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ e37fb.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known e60b6.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 78a44.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 5614a.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ af5b6.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Theorem 71ca2.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ba478.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known be44a.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ a7e88.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 91261.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 59632.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known a8ec7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 79ee1.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 12f92.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ f6312.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known ddb03.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ fa2d0.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Theorem 433c5.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ a1298.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known 1811c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ dd43e.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 151a9.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 4818f.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known f5518.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 4d3d7.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 3bafe.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ a1497.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known e039f.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 4086f.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Theorem 912e2.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ 0d367.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known eee35.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 44916.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known b0add.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 8acce.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 86e3f.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ b47d4.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 238e3.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 74622.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known b2a43.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 0788d.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Theorem 1569d.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ 5963b.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known 385f8.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ fa661.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known cc30c.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ 255f4.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . x13Known b44d9.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ c8a3f.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . x13Theorem 5045a.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ 0a634.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known 5cc37.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 2bad0.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Theorem 33195.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ 2feec.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known 075bf.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ d2e51.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known e79db.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ 76e3a.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . x13Known efeff.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 9eede.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known d50d0.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ ba960.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 472a0.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 74a95.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Theorem a98e6.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ 465a4.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known 8ef8b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 59a16.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 49ae6.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 94f0c.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known b1e02.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ 923e2.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Known 732af.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ 1b69c.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . x13Known 0f029.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ cec27.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ 5bab1.. x0 x1Theorem 9abc1.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ 24cfd.. x3 x1 ⟶ 5bab1.. x0 x1 (proof)Known 46936.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ 889b5.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . x13Known 84c45.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ 71ae3.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . x13Known eb420.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ df026.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . x13Known 0c026.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ 6bc75.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . x13Known 02ebd.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ 43a9d.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 ⟶ ∀ x13 : ο . x13Theorem 0d183.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ 216e5.. x3 x1 ⟶ ∀ x4 : ο . x4 (proof)
|
|