Search for blocks/addresses/...

Proofgold Address

address
PUVntE9onzBkUqhSAxv2QkYNinKws6VM9db
total
0
mg
-
conjpub
-
current assets
a01c9../a9708.. bday: 18989 doc published by Pr4zB..
Param ChurchNum_3ary_proj_p : (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ο
Param ChurchNum_8ary_proj_p : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ο
Param TwoRamseyGraph_4_5_24_ChurchNums_3x8 : (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ιιι
Param ChurchNums_3x8_to_u24 : (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ι
Definition FalseFalse := ∀ x0 : ο . x0
Known 01925.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 x0 x2 = ChurchNums_3x8_to_u24 x1 x3False
Param ChurchNums_8x3_to_3_lt7_id_ge7_rot2 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8_perm_1_2_3_4_5_6_7_0 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Known d7bcc.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x2 x0) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x2) = ChurchNums_3x8_to_u24 x1 x3False
Known b428c.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x2 x0) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x3 x1) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x3)False
Param ChurchNums_8x3_to_3_lt6_id_ge6_rot2 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8_perm_2_3_4_5_6_7_0_1 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Known 7787a.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x2 x0) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x2) = ChurchNums_3x8_to_u24 x1 x3False
Known f0975.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x2 x0) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x3 x1) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x3)False
Known 28750.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x2 x0) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x3 x1) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x3)False
Param ChurchNums_8x3_to_3_lt5_id_ge5_rot2 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8_perm_3_4_5_6_7_0_1_2 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Known b9a6b.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x2 x0) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x3 x1) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x3)False
Known e5001.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x2 x0) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x3 x1) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x3)False
Known 09666.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x2 x0) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x3 x1) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x3)False
Param ChurchNums_8x3_to_3_lt4_id_ge4_rot2 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Param ChurchNums_8_perm_4_5_6_7_0_1_2_3 : (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)
Known 74048.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x2 x0) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x2) = ChurchNums_3x8_to_u24 x1 x3False
Known f9a56.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x2 x0) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x3 x1) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x3)False
Known 9b117.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x2 x0) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x3 x1) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x3)False
Known 9fd37.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x2 x0) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x3 x1) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x3)False
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known 85ac5.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x2 x0) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x2) = ChurchNums_3x8_to_u24 x1 x3and (x1 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x2 x0) (x3 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x2)
Known bae77.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x2ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x3ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x2 x0) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x2) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x3 x1) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x3)and (x1 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x2 x0) (x3 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x2)
Param apap : ιιι
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Known 99cbf.. : ∀ x0 x1 x2 x3 x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x5 x6 x7 x8 x9 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_3ary_proj_p x2ChurchNum_3ary_proj_p x3ChurchNum_3ary_proj_p x4ChurchNum_8ary_proj_p x5ChurchNum_8ary_proj_p x6ChurchNum_8ary_proj_p x7ChurchNum_8ary_proj_p x8ChurchNum_8ary_proj_p x9(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x1 x6 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x2 x7 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x2 x7 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x3 x8 x4 x9 = λ x11 x12 . x12)∀ x10 : (((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι)(((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . (∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ap (x10 x11 x12) 0 = ChurchNums_3x8_to_u24 x11 x12)(∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ap (x10 x11 x12) u1 = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x12 x11) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x12))(∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ap (x10 x11 x12) u2 = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x12 x11) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x12))(∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ap (x10 x11 x12) u3 = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x12 x11) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x12))(∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ap (x10 x11 x12) u4 = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x12 x11) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x12))(∀ x11 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x11ChurchNum_8ary_proj_p x12∀ x13 . x13u5∀ x14 . x14u5ap (x10 x11 x12) x13 = ap (x10 x11 x12) x14x13 = x14)(∀ x11 x12 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x13 x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x11ChurchNum_8ary_proj_p x13ChurchNum_3ary_proj_p x12ChurchNum_8ary_proj_p x14(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x11 x13 x12 x14 = λ x16 x17 . x17)∀ x15 . x15u5∀ x16 . x16u5ap (x10 x11 x13) x15 = ap (x10 x12 x14) x16∀ x17 : ο . (x12 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x13 x11x14 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x13x17)(x11 = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x14 x12x13 = ChurchNums_8_perm_3_4_5_6_7_0_1_2 x14x17)x17)False
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Param ordinalordinal : ιο
Known ordinal_trichotomy_or_impredordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (x0x1x2)(x0 = x1x2)(x1x0x2)x2
Param nat_pnat_p : ιο
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0∀ x1 . x1x0nat_p x1
Known nat_5nat_5 : nat_p 5
Known f60cd.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x2ChurchNum_8ary_proj_p x3TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x3 x0 x2
Known cases_5cases_5 : ∀ x0 . x05∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 x0
Known tuple_5_0_eqtuple_5_0_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 0 = x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known tuple_5_1_eqtuple_5_1_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 1 = x1
Known tuple_5_2_eqtuple_5_2_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 2 = x2
Known tuple_5_3_eqtuple_5_3_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 3 = x3
Known tuple_5_4_eqtuple_5_4_eq : ∀ x0 x1 x2 x3 x4 . ap (lam 5 (λ x6 . If_i (x6 = 0) x0 (If_i (x6 = 1) x1 (If_i (x6 = 2) x2 (If_i (x6 = 3) x3 x4))))) 4 = x4
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known cases_2cases_2 : ∀ x0 . x02∀ x1 : ι → ο . x1 0x1 1x1 x0
Known cases_3cases_3 : ∀ x0 . x03∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0
Known cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0
Known 8f0b2.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x1 x0) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x1) = ChurchNums_3x8_to_u24 x0 x1∀ x2 : ο . x2
Known 7bf94.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x1 x0) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x1) = ChurchNums_3x8_to_u24 x0 x1∀ x2 : ο . x2
Known 471b2.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x1 x0) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x1) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x1 x0) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x1)∀ x2 : ο . x2
Known a9b55.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x1 x0) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x1) = ChurchNums_3x8_to_u24 x0 x1∀ x2 : ο . x2
Known 08b75.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x1 x0) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x1) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x1 x0) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x1)∀ x2 : ο . x2
Known 373fc.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x1 x0) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x1) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x1 x0) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x1)∀ x2 : ο . x2
Known d6534.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x1 x0) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x1) = ChurchNums_3x8_to_u24 x0 x1∀ x2 : ο . x2
Known 83ebc.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x1 x0) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x1) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt7_id_ge7_rot2 x1 x0) (ChurchNums_8_perm_1_2_3_4_5_6_7_0 x1)∀ x2 : ο . x2
Known 290ad.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x1 x0) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x1) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt6_id_ge6_rot2 x1 x0) (ChurchNums_8_perm_2_3_4_5_6_7_0_1 x1)∀ x2 : ο . x2
Known 987aa.. : ∀ x0 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_8ary_proj_p x1ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt4_id_ge4_rot2 x1 x0) (ChurchNums_8_perm_4_5_6_7_0_1_2_3 x1) = ChurchNums_3x8_to_u24 (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x1 x0) (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x1)∀ x2 : ο . x2
Theorem 165ef.. : ∀ x0 x1 x2 x3 x4 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x5 x6 x7 x8 x9 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_3ary_proj_p x2ChurchNum_3ary_proj_p x3ChurchNum_3ary_proj_p x4ChurchNum_8ary_proj_p x5ChurchNum_8ary_proj_p x6ChurchNum_8ary_proj_p x7ChurchNum_8ary_proj_p x8ChurchNum_8ary_proj_p x9(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x1 x6 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x2 x7 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x2 x7 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x3 x8 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x4 x9 = λ x11 x12 . x12)(TwoRamseyGraph_4_5_24_ChurchNums_3x8 x3 x8 x4 x9 = λ x11 x12 . x12)False (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition u16 := ordsucc u15
Definition u17 := ordsucc u16
Definition u18 := ordsucc u17
Definition u19 := ordsucc u18
Definition u20 := ordsucc u19
Definition u21 := ordsucc u20
Definition u22 := ordsucc u21
Definition u23 := ordsucc u22
Definition u24 := ordsucc u23
Param atleastpatleastp : ιιο
Definition TwoRamseyGraph_4_5_24 := λ x0 x1 . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x4 x5 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x2ChurchNum_3ary_proj_p x3ChurchNum_8ary_proj_p x4ChurchNum_8ary_proj_p x5x0 = x2 (λ x7 : ι → ι . λ x8 . x8) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 x8)))))))) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 x8)))))))))))))))) ordsucc (x4 (λ x7 : ι → ι . λ x8 . x8) (λ x7 : ι → ι . x7) (λ x7 : ι → ι . λ x8 . x7 (x7 x8)) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 x8))) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 x8)))) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 (x7 x8))))) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 (x7 (x7 x8)))))) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 (x7 (x7 (x7 x8))))))) ordsucc 0)x1 = x3 (λ x7 : ι → ι . λ x8 . x8) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 x8)))))))) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 (x7 x8)))))))))))))))) ordsucc (x5 (λ x7 : ι → ι . λ x8 . x8) (λ x7 : ι → ι . x7) (λ x7 : ι → ι . λ x8 . x7 (x7 x8)) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 x8))) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 x8)))) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 (x7 x8))))) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 (x7 (x7 x8)))))) (λ x7 : ι → ι . λ x8 . x7 (x7 (x7 (x7 (x7 (x7 (x7 x8))))))) ordsucc 0)TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x4 x3 x5 = λ x7 x8 . x7
Known 3ed86.. : ∀ x0 . atleastp u5 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0(x2 = x3∀ x7 : ο . x7)(x2 = x4∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x2 = x6∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)x1)x1
Known 4f390.. : ∀ x0 . x0u24∀ x1 : ο . (∀ x2 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x2ChurchNum_8ary_proj_p x3x0 = x2 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 x6)))))))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 x6)))))))))))))))) ordsucc (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x5 (x5 x6)) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 x6))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 x6)))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 x6))))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 x6)))))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 (x5 x6))))))) ordsucc 0)x1)x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known 7f11d.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x2ChurchNum_8ary_proj_p x3or (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x5) (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x6)
Known bebde.. : ∀ x0 x1 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x2 x3 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x0ChurchNum_3ary_proj_p x1ChurchNum_8ary_proj_p x2ChurchNum_8ary_proj_p x3x0 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 x6)))))))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 x6)))))))))))))))) ordsucc (x2 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x5 (x5 x6)) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 x6))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 x6)))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 x6))))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 x6)))))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 (x5 x6))))))) ordsucc 0) = x1 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 x6)))))))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 (x5 x6)))))))))))))))) ordsucc (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x5 (x5 x6)) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 x6))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 x6)))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 x6))))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 x6)))))) (λ x5 : ι → ι . λ x6 . x5 (x5 (x5 (x5 (x5 (x5 (x5 x6))))))) ordsucc 0)and (x0 = x1) (x2 = x3)
Theorem 6af4c.. : ∀ x0 . x0u24atleastp u5 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_4_5_24 x1 x2)) (proof)
Definition TwoRamseyProp_atleastp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (atleastp x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (atleastp x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Known 9303b.. : ∀ x0 x1 . TwoRamseyGraph_4_5_24 x0 x1TwoRamseyGraph_4_5_24 x1 x0
Known 51a60.. : ∀ x0 . x0u24atleastp u4 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)TwoRamseyGraph_4_5_24 x1 x2)
Theorem not_TwoRamseyProp_atleast_4_5_24 : not (TwoRamseyProp_atleastp 4 5 24) (proof)
Param TwoRamseyPropTwoRamseyProp : ιιιο
Known TwoRamseyProp_atleastp_atleastp : ∀ x0 x1 x2 x3 x4 . TwoRamseyProp x0 x2 x4atleastp x1 x0atleastp x3 x2TwoRamseyProp_atleastp x1 x3 x4
Known atleastp_ref : ∀ x0 . atleastp x0 x0
Theorem not_TwoRamseyProp_4_5_24not_TwoRamseyProp_4_5_24 : not (TwoRamseyProp 4 5 24) (proof)

previous assets