current assets |
---|
96a50../91f91.. bday: 4948 doc published by Pr6Pc..Param explicit_Fieldexplicit_Field : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → οParam explicit_Field_minusexplicit_Field_minus : ι → ι → ι → (ι → ι → ι) → (ι → ι → ι) → ι → ιParam ReplSep2ReplSep2 : ι → (ι → ι) → (ι → ι → ο) → CT2 ιParam TrueTrue : οParam andand : ο → ο → οKnown explicit_Field_Iexplicit_Field_I : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 ∈ x0) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x3 x5 x6 = x3 x6 x5) ⟶ x1 ∈ x0 ⟶ (∀ x5 . x5 ∈ x0 ⟶ x3 x1 x5 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ∈ x0) (x3 x5 x7 = x1) ⟶ x6) ⟶ x6) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 ∈ x0) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x4 x5 x6 = x4 x6 x5) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x5 : ο . x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ x4 x2 x5 = x5) ⟶ (∀ x5 . x5 ∈ x0 ⟶ (x5 = x1 ⟶ ∀ x6 : ο . x6) ⟶ ∀ x6 : ο . (∀ x7 . and (x7 ∈ x0) (x4 x5 x7 = x2) ⟶ x6) ⟶ x6) ⟶ (∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7)) ⟶ explicit_Field x0 x1 x2 x3 x4Known andIandI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Known explicit_Field_minus_closexplicit_Field_minus_clos : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ explicit_Field_minus x0 x1 x2 x3 x4 x5 ∈ x0Known explicit_Field_minus_Rexplicit_Field_minus_R : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 x5 (explicit_Field_minus x0 x1 x2 x3 x4 x5) = x1Known explicit_Field_zero_multLexplicit_Field_zero_multL : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x4 x1 x5 = x1Theorem 33222.. : ∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Field x0 x1 x2 x3 x4 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x3 x7 (x3 x8 x9) = x3 (x3 x7 x8) x9) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x3 x8 x7) ⟶ x1 ∈ x0 ⟶ (∀ x7 . x7 ∈ x0 ⟶ x3 x1 x7 = x7) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 ∈ x0) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x4 x7 x8 = x4 x8 x7) ⟶ x2 ∈ x0 ⟶ (x2 = x1 ⟶ ∀ x7 : ο . x7) ⟶ (∀ x7 . x7 ∈ x0 ⟶ x4 x2 x7 = x7) ⟶ explicit_Field_minus x0 x1 x2 x3 x4 x1 = x1 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x6 x7 x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x6 x7 x8 = x6 x10 x12) ⟶ x11) ⟶ x11)) = x7) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (x6 x7 x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 x7 x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)) = x8) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ prim0 (λ x8 . and (x8 ∈ x0) (∀ x9 : ο . (∀ x10 . and (x10 ∈ x0) (x7 = x6 x8 x10) ⟶ x9) ⟶ x9)) ∈ x0) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ prim0 (λ x8 . and (x8 ∈ x0) (x7 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) x8)) ∈ x0) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11)) = prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)) ⟶ prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)) = prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)) ⟶ x7 = x8) ⟶ x6 x1 x1 ∈ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6 ⟶ x6 x2 x1 ∈ ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6 ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))) ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x6 (x3 (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16) ⟶ x15) ⟶ x15))) (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16) ⟶ x15) ⟶ x15)))) (x3 (prim0 (λ x14 . and (x14 ∈ x0) (x7 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18) ⟶ x17) ⟶ x17))) x14))) (prim0 (λ x14 . and (x14 ∈ x0) (x8 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18) ⟶ x17) ⟶ x17))) x14)))) = x6 x10 x12) ⟶ x11) ⟶ x11)) = x3 (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (x6 (x3 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13)))) (x3 (prim0 (λ x12 . and (x12 ∈ x0) (x7 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16) ⟶ x15) ⟶ x15))) x12))) (prim0 (λ x12 . and (x12 ∈ x0) (x8 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16) ⟶ x15) ⟶ x15))) x12)))) = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 (x3 (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18) ⟶ x17) ⟶ x17))) (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18) ⟶ x17) ⟶ x17)))) (x3 (prim0 (λ x16 . and (x16 ∈ x0) (x7 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x18 x20) ⟶ x19) ⟶ x19))) x16))) (prim0 (λ x16 . and (x16 ∈ x0) (x8 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x18 x20) ⟶ x19) ⟶ x19))) x16)))) = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)) = x3 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10))))) ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x6 (x3 (x4 (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16) ⟶ x15) ⟶ x15))) (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16) ⟶ x15) ⟶ x15)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . and (x14 ∈ x0) (x7 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18) ⟶ x17) ⟶ x17))) x14))) (prim0 (λ x14 . and (x14 ∈ x0) (x8 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18) ⟶ x17) ⟶ x17))) x14)))))) (x3 (x4 (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16) ⟶ x15) ⟶ x15))) (prim0 (λ x14 . and (x14 ∈ x0) (x8 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18) ⟶ x17) ⟶ x17))) x14)))) (x4 (prim0 (λ x14 . and (x14 ∈ x0) (x7 = x6 (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18) ⟶ x17) ⟶ x17))) x14))) (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16) ⟶ x15) ⟶ x15))))) = x6 x10 x12) ⟶ x11) ⟶ x11)) = x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ prim0 (λ x10 . and (x10 ∈ x0) (x6 (x3 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (x7 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16) ⟶ x15) ⟶ x15))) x12))) (prim0 (λ x12 . and (x12 ∈ x0) (x8 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16) ⟶ x15) ⟶ x15))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) (prim0 (λ x12 . and (x12 ∈ x0) (x8 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x8 = x6 x14 x16) ⟶ x15) ⟶ x15))) x12)))) (x4 (prim0 (λ x12 . and (x12 ∈ x0) (x7 = x6 (prim0 (λ x14 . and (x14 ∈ x0) (∀ x15 : ο . (∀ x16 . and (x16 ∈ x0) (x7 = x6 x14 x16) ⟶ x15) ⟶ x15))) x12))) (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))))) = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x6 (x3 (x4 (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18) ⟶ x17) ⟶ x17))) (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18) ⟶ x17) ⟶ x17)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . and (x16 ∈ x0) (x7 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x18 x20) ⟶ x19) ⟶ x19))) x16))) (prim0 (λ x16 . and (x16 ∈ x0) (x8 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x18 x20) ⟶ x19) ⟶ x19))) x16)))))) (x3 (x4 (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x7 = x6 x16 x18) ⟶ x17) ⟶ x17))) (prim0 (λ x16 . and (x16 ∈ x0) (x8 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x8 = x6 x18 x20) ⟶ x19) ⟶ x19))) x16)))) (x4 (prim0 (λ x16 . and (x16 ∈ x0) (x7 = x6 (prim0 (λ x18 . and (x18 ∈ x0) (∀ x19 : ο . (∀ x20 . and (x20 ∈ x0) (x7 = x6 x18 x20) ⟶ x19) ⟶ x19))) x16))) (prim0 (λ x16 . and (x16 ∈ x0) (∀ x17 : ο . (∀ x18 . and (x18 ∈ x0) (x8 = x6 x16 x18) ⟶ x17) ⟶ x17))))) = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)) = x3 (x4 (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) (prim0 (λ x10 . and (x10 ∈ x0) (x8 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x8 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10)))) (x4 (prim0 (λ x10 . and (x10 ∈ x0) (x7 = x6 (prim0 (λ x12 . and (x12 ∈ x0) (∀ x13 : ο . (∀ x14 . and (x14 ∈ x0) (x7 = x6 x12 x14) ⟶ x13) ⟶ x13))) x10))) (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x8 = x6 x10 x12) ⟶ x11) ⟶ x11))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12))))) = x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13) ⟶ x12) ⟶ x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13) ⟶ x12) ⟶ x12)))))) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∀ x8 : ο . (∀ x9 . and (x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6) (x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13) ⟶ x12) ⟶ x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (x11 ∈ x0) (x9 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x9 = x6 x11 x13) ⟶ x12) ⟶ x12))))) = x6 x2 x1) ⟶ x8) ⟶ x8) ⟶ (∀ x7 . x7 ∈ ReplSep2 x0 (λ x8 . x0) (λ x8 x9 . True) x6 ⟶ ∀ x8 . x8 ∈ ReplSep2 x0 (λ x9 . x0) (λ x9 x10 . True) x6 ⟶ ∀ x9 . x9 ∈ ReplSep2 x0 (λ x10 . x0) (λ x10 x11 . True) x6 ⟶ x6 (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (x3 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) = x6 x11 x13) ⟶ x12) ⟶ x12)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x6 (x3 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (x3 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))))) (x3 (x4 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (x3 (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x6 (x3 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (x3 (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11)))) (x4 (prim0 (λ x11 . and (x11 ∈ x0) (x7 = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x6 (x3 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (x3 (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) = x6 x11 x13) ⟶ x12) ⟶ x12))))) = x6 (x3 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (x8 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12))) (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x6 (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))))) (x3 (x4 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) (prim0 (λ x15 . and (x15 ∈ x0) (x9 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15)))) (x4 (prim0 (λ x15 . and (x15 ∈ x0) (x7 = x6 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) x15))) (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))))) = x6 x11 x13) ⟶ x12) ⟶ x12)))) (x3 (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (x8 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x8 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x8 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (x8 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x8 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x8 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))) (prim0 (λ x11 . and (x11 ∈ x0) (x6 (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))))) (x3 (x4 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x7 = x6 x13 x15) ⟶ x14) ⟶ x14))) (prim0 (λ x13 . and (x13 ∈ x0) (x9 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x9 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13)))) (x4 (prim0 (λ x13 . and (x13 ∈ x0) (x7 = x6 (prim0 (λ x15 . and (x15 ∈ x0) (∀ x16 : ο . (∀ x17 . and (x17 ∈ x0) (x7 = x6 x15 x17) ⟶ x16) ⟶ x16))) x13))) (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x9 = x6 x13 x15) ⟶ x14) ⟶ x14))))) = x6 (prim0 (λ x13 . and (x13 ∈ x0) (∀ x14 : ο . (∀ x15 . and (x15 ∈ x0) (x6 (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))))) (x3 (x4 (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x7 = x6 x17 x19) ⟶ x18) ⟶ x18))) (prim0 (λ x17 . and (x17 ∈ x0) (x9 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x9 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17)))) (x4 (prim0 (λ x17 . and (x17 ∈ x0) (x7 = x6 (prim0 (λ x19 . and (x19 ∈ x0) (∀ x20 : ο . (∀ x21 . and (x21 ∈ x0) (x7 = x6 x19 x21) ⟶ x20) ⟶ x20))) x17))) (prim0 (λ x17 . and (x17 ∈ x0) (∀ x18 : ο . (∀ x19 . and (x19 ∈ x0) (x9 = x6 x17 x19) ⟶ x18) ⟶ x18))))) = x6 x13 x15) ⟶ x14) ⟶ x14))) x11))))) ⟶ explicit_Field (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))))) (proof)
|
|