Search for blocks/addresses/...
Proofgold Address
address
PUYRPjGjK7godvYGc44HUGzgAdQX2vu28HV
total
0
mg
-
conjpub
-
current assets
61eca..
/
43e67..
bday:
8277
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
omega
omega
:
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Definition
equiv_nat_mod
:=
λ x0 x1 x2 .
and
(
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
x2
∈
setminus
omega
1
)
)
(
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
add_nat
x0
(
mul_nat
x4
x2
)
=
x1
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
add_nat
x1
(
mul_nat
x4
x2
)
=
x0
)
⟶
x3
)
⟶
x3
)
)
Param
int_alt1
int
:
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Definition
divides_int_alt1
divides_int
:=
λ x0 x1 .
and
(
and
(
x0
∈
int_alt1
)
(
x1
∈
int_alt1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
int_alt1
)
(
mul_SNo
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
6ccc6..
:=
λ x0 x1 x2 .
and
(
and
(
and
(
x0
∈
int_alt1
)
(
x1
∈
int_alt1
)
)
(
x2
∈
setminus
omega
1
)
)
(
divides_int_alt1
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
)
Param
SNo
SNo
:
ι
→
ο
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
c3d99..
Subq_omega_int
:
omega
⊆
int_alt1
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
a0aa5..
int_add_SNo
:
∀ x0 .
x0
∈
int_alt1
⟶
∀ x1 .
x1
∈
int_alt1
⟶
add_SNo
x0
x1
∈
int_alt1
Known
daaad..
int_minus_SNo
:
∀ x0 .
x0
∈
int_alt1
⟶
minus_SNo
x0
∈
int_alt1
Known
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
Known
add_nat_add_SNo
add_nat_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
add_SNo
x0
x1
Known
mul_SNo_In_omega
mul_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
x0
x1
∈
omega
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
1b4d5..
int_minus_SNo_omega
:
∀ x0 .
x0
∈
omega
⟶
minus_SNo
x0
∈
int_alt1
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
add_SNo_cancel_R
add_SNo_cancel_R
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x1
=
add_SNo
x2
x1
⟶
x0
=
x2
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
add_SNo_minus_R2'
add_SNo_minus_R2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
add_SNo
x0
(
minus_SNo
x1
)
)
x1
=
x0
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
add_SNo_minus_R2
add_SNo_minus_R2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
add_SNo
x0
x1
)
(
minus_SNo
x1
)
=
x0
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Theorem
aa221..
:
∀ x0 x1 x2 .
equiv_nat_mod
x0
x1
x2
⟶
6ccc6..
x0
x1
x2
(proof)
Known
a3283..
int_SNo_cases
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x1
∈
omega
⟶
x0
x1
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
x0
(
minus_SNo
x1
)
)
⟶
∀ x1 .
x1
∈
int_alt1
⟶
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
add_SNo_minus_SNo_prop2
add_SNo_minus_SNo_prop2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
0c7a0..
:
∀ x0 .
x0
∈
int_alt1
⟶
SNo
x0
Theorem
6db0d..
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 .
6ccc6..
x0
x1
x2
⟶
equiv_nat_mod
x0
x1
x2
(proof)
previous assets