Search for blocks/addresses/...

Proofgold Address

address
PUZpgUBtGu2nHSVEqRS2FCzdDvTvab51v6h
total
0
mg
-
conjpub
-
current assets
04058../7faad.. bday: 12306 doc published by PrGxv..
Param ordinalordinal : ιο
Param mul_SNomul_SNo : ιιι
Param SNoSNo : ιο
Param SNoS_SNoS_ : ιι
Param SNoLevSNoLev : ιι
Param SNoLtSNoLt : ιιο
Known SNo_max_ordinalSNo_max_ordinal : ∀ x0 . SNo x0(∀ x1 . x1SNoS_ (SNoLev x0)SNoLt x1 x0)ordinal x0
Param SNo_SNo_ : ιιο
Known SNoS_E2SNoS_E2 : ∀ x0 . ordinal x0∀ x1 . x1SNoS_ x0∀ x2 : ο . (SNoLev x1x0ordinal (SNoLev x1)SNo x1SNo_ (SNoLev x1) x1x2)x2
Known SNoLev_ordinalSNoLev_ordinal : ∀ x0 . SNo x0ordinal (SNoLev x0)
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Param SNoRSNoR : ιι
Param SNoLSNoL : ιι
Param SNoLeSNoLe : ιιο
Param add_SNoadd_SNo : ιιι
Known mul_SNo_SNoR_interpolate_impredmul_SNo_SNoR_interpolate_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 . x2SNoR (mul_SNo x0 x1)∀ x3 : ο . (∀ x4 . x4SNoL x0∀ x5 . x5SNoR x1SNoLe (add_SNo (mul_SNo x4 x1) (mul_SNo x0 x5)) (add_SNo x2 (mul_SNo x4 x5))x3)(∀ x4 . x4SNoR x0∀ x5 . x5SNoL x1SNoLe (add_SNo (mul_SNo x4 x1) (mul_SNo x0 x5)) (add_SNo x2 (mul_SNo x4 x5))x3)x3
Known SNoR_ISNoR_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x1SNoR x0
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known ordinal_SNoLevordinal_SNoLev : ∀ x0 . ordinal x0SNoLev x0 = x0
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Known ordinal_SNoLev_maxordinal_SNoLev_max : ∀ x0 . ordinal x0∀ x1 . SNo x1SNoLev x1x0SNoLt x1 x0
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known ordinal_SNoordinal_SNo : ∀ x0 . ordinal x0SNo x0
Theorem mul_SNo_ordinal_ordinalmul_SNo_ordinal_ordinal : ∀ x0 . ordinal x0∀ x1 . ordinal x1ordinal (mul_SNo x0 x1) (proof)
Known ordinal_SNoLt_Inordinal_SNoLt_In : ∀ x0 x1 . ordinal x0ordinal x1SNoLt x0 x1x0x1
Known add_SNo_ordinal_ordinaladd_SNo_ordinal_ordinal : ∀ x0 . ordinal x0∀ x1 . ordinal x1ordinal (add_SNo x0 x1)
Known mul_SNo_Ltmul_SNo_Lt : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x2 x0SNoLt x3 x1SNoLt (add_SNo (mul_SNo x2 x1) (mul_SNo x0 x3)) (add_SNo (mul_SNo x0 x1) (mul_SNo x2 x3))
Known ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Known ordinal_Heredordinal_Hered : ∀ x0 . ordinal x0∀ x1 . x1x0ordinal x1
Theorem 59192.. : ∀ x0 . ordinal x0∀ x1 . ordinal x1∀ x2 . x2x0∀ x3 . x3x1add_SNo (mul_SNo x2 x1) (mul_SNo x0 x3)add_SNo (mul_SNo x0 x1) (mul_SNo x2 x3) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SingSing : ιι
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Theorem 10cf1.. : ∀ x0 . SNo x0SNoCutP (SNoL x0) (Sing x0) (proof)
Param SNo_extend0SNo_extend0 : ιι
Param SNoCutSNoCut : ιιι
Param ordsuccordsucc : ιι
Param binunionbinunion : ιιι
Param famunionfamunion : ι(ιι) → ι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known SNo_extend0_SNoSNo_extend0_SNo : ∀ x0 . SNo x0SNo (SNo_extend0 x0)
Param binintersectbinintersect : ιιι
Known SNoLtESNoLtE : ∀ x0 x1 . SNo x0SNo x1SNoLt x0 x1∀ x2 : ο . (∀ x3 . SNo x3SNoLev x3binintersect (SNoLev x0) (SNoLev x1)SNoEq_ (SNoLev x3) x3 x0SNoEq_ (SNoLev x3) x3 x1SNoLt x0 x3SNoLt x3 x1nIn (SNoLev x3) x0SNoLev x3x1x2)(SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1x2)(SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0x2)x2
Known SNoLtI2SNoLtI2 : ∀ x0 x1 . SNoLev x0SNoLev x1SNoEq_ (SNoLev x0) x0 x1SNoLev x0x1SNoLt x0 x1
Known SNo_extend0_SNoLevSNo_extend0_SNoLev : ∀ x0 . SNo x0SNoLev (SNo_extend0 x0) = ordsucc (SNoLev x0)
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known SNoEq_tra_SNoEq_tra_ : ∀ x0 x1 x2 x3 . SNoEq_ x0 x1 x2SNoEq_ x0 x2 x3SNoEq_ x0 x1 x3
Known SNoEq_antimon_SNoEq_antimon_ : ∀ x0 . ordinal x0∀ x1 . x1x0∀ x2 x3 . SNoEq_ x0 x2 x3SNoEq_ x1 x2 x3
Known SNoEq_sym_SNoEq_sym_ : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2SNoEq_ x0 x2 x1
Known SNo_extend0_SNoEqSNo_extend0_SNoEq : ∀ x0 . SNo x0SNoEq_ (SNoLev x0) (SNo_extend0 x0) x0
Known SNoEq_E2SNoEq_E2 : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2∀ x3 . x3x0x3x2x3x1
Known binintersectE2binintersectE2 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x1
Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0x1x1x0False
Known SNo_extend0_LtSNo_extend0_Lt : ∀ x0 . SNo x0SNoLt (SNo_extend0 x0) x0
Known SingISingI : ∀ x0 . x0Sing x0
Known binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x0
Known SNoL_ISNoL_I : ∀ x0 . SNo x0∀ x1 . SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x1SNoL x0
Known SNo_eqSNo_eq : ∀ x0 x1 . SNo x0SNo x1SNoLev x0 = SNoLev x1SNoEq_ (SNoLev x0) x0 x1x0 = x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Known ordinal_TransSetordinal_TransSet : ∀ x0 . ordinal x0TransSet x0
Theorem 73c53.. : ∀ x0 . SNo x0SNo_extend0 x0 = SNoCut (SNoL x0) (Sing x0) (proof)
Theorem 8d610.. : ∀ x0 . SNo x0SNoCutP (Sing x0) (SNoR x0) (proof)
Param SNo_extend1SNo_extend1 : ιι
Known SNo_extend1_SNoSNo_extend1_SNo : ∀ x0 . SNo x0SNo (SNo_extend1 x0)
Known SNo_extend1_GtSNo_extend1_Gt : ∀ x0 . SNo x0SNoLt x0 (SNo_extend1 x0)
Known SNoLtI3SNoLtI3 : ∀ x0 x1 . SNoLev x1SNoLev x0SNoEq_ (SNoLev x1) x0 x1nIn (SNoLev x1) x0SNoLt x0 x1
Known SNo_extend1_SNoLevSNo_extend1_SNoLev : ∀ x0 . SNo x0SNoLev (SNo_extend1 x0) = ordsucc (SNoLev x0)
Known SNo_extend1_SNoEqSNo_extend1_SNoEq : ∀ x0 . SNo x0SNoEq_ (SNoLev x0) (SNo_extend1 x0) x0
Known SNoEq_E1SNoEq_E1 : ∀ x0 x1 x2 . SNoEq_ x0 x1 x2∀ x3 . x3x0x3x1x3x2
Theorem 62b20.. : ∀ x0 . SNo x0SNo_extend1 x0 = SNoCut (Sing x0) (SNoR x0) (proof)

previous assets