Search for blocks/addresses/...
Proofgold Address
address
PUaYW4uvD2bSx4YYeBggZiGXHBoNpHcfUHx
total
0
mg
-
conjpub
-
current assets
90f36..
/
c4418..
bday:
2901
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
e0e40..
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Param
eb53d..
:
ι
→
CT2
ι
Definition
e0718..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
eb53d..
x0
x2
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
52da6..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
4a7ef..
=
x0
Theorem
aa42c..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
x0
=
e0718..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
4e66f..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
x0
=
f482f..
(
e0718..
x0
x1
x2
)
4a7ef..
(proof)
Param
decode_c
:
ι
→
(
ι
→
ο
) →
ο
Known
c2bca..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
81500..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
prim1
x3
x0
)
⟶
decode_c
(
e0e40..
x0
x1
)
x2
=
x1
x2
Theorem
4f736..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
x0
=
e0718..
x1
x2
x3
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x1
)
⟶
x2
x4
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
7d0bf..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
x1
x3
=
decode_c
(
f482f..
(
e0718..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Param
e3162..
:
ι
→
ι
→
ι
→
ι
Known
11d6d..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
35054..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
e3162..
(
eb53d..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
ca3d4..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
x0
=
e0718..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x4
x5
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
9adc5..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
x4
=
e3162..
(
f482f..
(
e0718..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
8cf5e..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
e0718..
x0
x2
x4
=
e0718..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x0
)
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x5
x6
x7
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
8fdaf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
eb53d..
x0
x1
=
eb53d..
x0
x2
Known
fe043..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
e0e40..
x0
x1
=
e0e40..
x0
x2
Theorem
60454..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
iff
(
x1
x5
)
(
x2
x5
)
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
x4
x5
x6
)
⟶
e0718..
x0
x1
x3
=
e0718..
x0
x2
x4
(proof)
Definition
4b1d1..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
x1
(
e0718..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
6d000..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
4b1d1..
(
e0718..
x0
x1
x2
)
(proof)
Theorem
7e97a..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
4b1d1..
(
e0718..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
c8c5b..
:
∀ x0 .
4b1d1..
x0
⟶
x0
=
e0718..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
1ddfe..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
d20fc..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
x5
x6
x7
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
1ddfe..
(
e0718..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
9d6b9..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
a5044..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
x5
x6
x7
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
9d6b9..
(
e0718..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
fc7e7..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ι
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
0fc90..
x0
x2
)
)
)
Theorem
d2cfd..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
x0
=
fc7e7..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
f2b05..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
x0
=
f482f..
(
fc7e7..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
fb8fd..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
x0
=
fc7e7..
x1
x2
x3
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x1
)
⟶
x2
x4
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
4a39e..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
x1
x3
=
decode_c
(
f482f..
(
fc7e7..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
b2a9a..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
x0
=
fc7e7..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x3
x4
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
ac81b..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
x2
x3
=
f482f..
(
f482f..
(
fc7e7..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(proof)
Theorem
91ffc..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ι
.
fc7e7..
x0
x2
x4
=
fc7e7..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x0
)
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Theorem
bc3e9..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ι
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
iff
(
x1
x5
)
(
x2
x5
)
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
x4
x5
)
⟶
fc7e7..
x0
x1
x3
=
fc7e7..
x0
x2
x4
(proof)
Definition
9b04f..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
x1
(
fc7e7..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
10523..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
9b04f..
(
fc7e7..
x0
x1
x2
)
(proof)
Theorem
5255e..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
9b04f..
(
fc7e7..
x0
x1
x2
)
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
(proof)
Theorem
905b4..
:
∀ x0 .
9b04f..
x0
⟶
x0
=
fc7e7..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
47729..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
7288d..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
47729..
(
fc7e7..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
d2caa..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
b378f..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
d2caa..
(
fc7e7..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
36e8b..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
d2155..
x0
x2
)
)
)
Theorem
25e48..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
x0
=
36e8b..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
f342b..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 x3 :
ι →
ι → ο
.
x3
x0
(
f482f..
(
36e8b..
x0
x1
x2
)
4a7ef..
)
⟶
x3
(
f482f..
(
36e8b..
x0
x1
x2
)
4a7ef..
)
x0
(proof)
Theorem
81710..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
x0
=
36e8b..
x1
x2
x3
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x1
)
⟶
x2
x4
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
fbab3..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
x1
x3
=
decode_c
(
f482f..
(
36e8b..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
e5f44..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
x0
=
36e8b..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x3
x4
x5
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
x5
(proof)
Theorem
f560f..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
x4
=
2b2e3..
(
f482f..
(
36e8b..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
(proof)
Theorem
6e266..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ο
.
36e8b..
x0
x2
x4
=
36e8b..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x0
)
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x5
x6
x7
)
(proof)
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Theorem
b1695..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
iff
(
x1
x5
)
(
x2
x5
)
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
iff
(
x3
x5
x6
)
(
x4
x5
x6
)
)
⟶
36e8b..
x0
x1
x3
=
36e8b..
x0
x2
x4
(proof)
Definition
f98e3..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ο
.
x1
(
36e8b..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
18bcb..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ο
.
f98e3..
(
36e8b..
x0
x1
x2
)
(proof)
Theorem
18a9e..
:
∀ x0 .
f98e3..
x0
⟶
x0
=
36e8b..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
93ee0..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
6d3c9..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
93ee0..
(
36e8b..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
19f66..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
e530a..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
19f66..
(
36e8b..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
01d88..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
1216a..
x0
x2
)
)
)
Theorem
acf62..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
x0
=
01d88..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
807ec..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
x0
=
f482f..
(
01d88..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
80597..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
x0
=
01d88..
x1
x2
x3
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x1
)
⟶
x2
x4
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
06981..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
x1
x3
=
decode_c
(
f482f..
(
01d88..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
909f9..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
x0
=
01d88..
x1
x2
x3
⟶
∀ x4 .
prim1
x4
x1
⟶
x3
x4
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x4
(proof)
Theorem
9d3ac..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
x2
x3
=
decode_p
(
f482f..
(
01d88..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(proof)
Theorem
60929..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ο
.
01d88..
x0
x2
x4
=
01d88..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x0
)
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
prim1
x6
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Theorem
7dddf..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
iff
(
x1
x5
)
(
x2
x5
)
)
⟶
(
∀ x5 .
prim1
x5
x0
⟶
iff
(
x3
x5
)
(
x4
x5
)
)
⟶
01d88..
x0
x1
x3
=
01d88..
x0
x2
x4
(proof)
Definition
5abc4..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ο
.
x1
(
01d88..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
b5260..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
5abc4..
(
01d88..
x0
x1
x2
)
(proof)
Theorem
2fb83..
:
∀ x0 .
5abc4..
x0
⟶
x0
=
01d88..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
df569..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
d57b7..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
df569..
(
01d88..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
c0c2f..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Theorem
7b28b..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ο
.
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
prim1
x6
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
c0c2f..
(
01d88..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
71057..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
x2
)
)
Theorem
39d90..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
x0
=
71057..
x1
x2
x3
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
13c69..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 .
x0
=
f482f..
(
71057..
x0
x1
x2
)
4a7ef..
(proof)
Theorem
76ad3..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
x0
=
71057..
x1
x2
x3
⟶
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x1
)
⟶
x2
x4
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x4
(proof)
Theorem
83aae..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 .
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
x1
x3
=
decode_c
(
f482f..
(
71057..
x0
x1
x2
)
(
4ae4a..
4a7ef..
)
)
x3
(proof)
Theorem
f7e51..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
x0
=
71057..
x1
x2
x3
⟶
x3
=
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
587ed..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 .
x2
=
f482f..
(
71057..
x0
x1
x2
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
5d89c..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 .
71057..
x0
x2
x4
=
71057..
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x0
)
⟶
x2
x6
=
x3
x6
)
)
(
x4
=
x5
)
(proof)
Theorem
4be07..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
(
∀ x4 :
ι → ο
.
(
∀ x5 .
x4
x5
⟶
prim1
x5
x0
)
⟶
iff
(
x1
x4
)
(
x2
x4
)
)
⟶
71057..
x0
x1
x3
=
71057..
x0
x2
x3
(proof)
Definition
fce12..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 .
prim1
x4
x2
⟶
x1
(
71057..
x2
x3
x4
)
)
⟶
x1
x0
Theorem
063f4..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 .
prim1
x2
x0
⟶
fce12..
(
71057..
x0
x1
x2
)
(proof)
Theorem
79df9..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 .
fce12..
(
71057..
x0
x1
x2
)
⟶
prim1
x2
x0
(proof)
Theorem
f7d77..
:
∀ x0 .
fce12..
x0
⟶
x0
=
71057..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Definition
2ca7a..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
f6e09..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
2ca7a..
(
71057..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
d08a5..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Theorem
1c044..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 .
(
∀ x4 :
(
ι → ο
)
→ ο
.
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x1
)
⟶
iff
(
x2
x5
)
(
x4
x5
)
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
d08a5..
(
71057..
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
previous assets