current assets |
---|
28ebb../4f5de.. bday: 37613 doc published by Pr4zB..Param 4402e.. : ι → (ι → ι → ο) → οParam cf2df.. : ι → (ι → ι → ο) → οDefinition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param setminussetminus : ι → ι → ιParam SingSing : ι → ιParam e9a2b.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam d1f25.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 9f2b5.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f55c6.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 79b8d.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 2e358.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 91ad9.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam e4d70.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 07080.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam f3db1.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 43d0f.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam 0118b.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οParam ac9f0.. : (ι → ι → ο) → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → οDefinition 50e24.. := λ x0 . λ x1 : ι → ι → ο . ∀ x2 : ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ d1f25.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 9f2b5.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ f55c6.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 79b8d.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 2e358.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 91ad9.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ e4d70.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 07080.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ f3db1.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 43d0f.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ 0118b.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ ac9f0.. x1 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ x2) ⟶ x2Known c4f87.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ x2 x3 x4 ⟶ x2 x4 x3) ⟶ 4402e.. x1 x2 ⟶ cf2df.. x1 x2 ⟶ ∀ x3 . x3 ∈ x1 ⟶ x0 ⊆ setminus x1 (Sing x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ ∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ ∀ x11 . x11 ∈ x0 ⟶ ∀ x12 . x12 ∈ x0 ⟶ ∀ x13 . x13 ∈ x0 ⟶ ∀ x14 . x14 ∈ x0 ⟶ e9a2b.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ ∀ x15 : ο . (∀ x16 . x16 ∈ x0 ⟶ ∀ x17 . x17 ∈ x0 ⟶ ∀ x18 . x18 ∈ x0 ⟶ ∀ x19 . x19 ∈ x0 ⟶ ∀ x20 . x20 ∈ x0 ⟶ ∀ x21 . x21 ∈ x0 ⟶ ∀ x22 . x22 ∈ x0 ⟶ ∀ x23 . x23 ∈ x0 ⟶ ∀ x24 . x24 ∈ x0 ⟶ ∀ x25 . x25 ∈ x0 ⟶ ∀ x26 . x26 ∈ x0 ⟶ d1f25.. x2 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x3 ⟶ x15) ⟶ x15Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0 ⊆ x1 ⟶ x1 ⊆ x2 ⟶ x0 ⊆ x2Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1 ⊆ x0Theorem ab30f.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ⟶ x1 x3 x2) ⟶ 4402e.. x0 x1 ⟶ cf2df.. x0 x1 ⟶ ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ⊆ setminus x0 (Sing x2) ⟶ ∀ x4 . x4 ∈ x3 ⟶ ∀ x5 . x5 ∈ x3 ⟶ ∀ x6 . x6 ∈ x3 ⟶ ∀ x7 . x7 ∈ x3 ⟶ ∀ x8 . x8 ∈ x3 ⟶ ∀ x9 . x9 ∈ x3 ⟶ ∀ x10 . x10 ∈ x3 ⟶ ∀ x11 . x11 ∈ x3 ⟶ ∀ x12 . x12 ∈ x3 ⟶ ∀ x13 . x13 ∈ x3 ⟶ ∀ x14 . x14 ∈ x3 ⟶ e9a2b.. x1 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 ⟶ 50e24.. x0 x1 (proof)
|
|