Search for blocks/addresses/...
Proofgold Address
address
PUbKmca8iRFNEBwDLYXXnp9RECgxvTDJry3
total
0
mg
-
conjpub
-
current assets
cffce..
/
64e55..
bday:
11610
doc published by
PrGxv..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
setsum
setsum
:
ι
→
ι
→
ι
Definition
tuple_p
tuple_p
:=
λ x0 x1 .
∀ x2 .
x2
∈
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
x2
=
setsum
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
lamI
lamI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
setsum
x2
x3
∈
lam
x0
x1
Known
apI
apI
:
∀ x0 x1 x2 .
setsum
x1
x2
∈
x0
⟶
x2
∈
ap
x0
x1
Known
lamE
lamE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x1
x4
)
(
x2
=
setsum
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
apE
apE
:
∀ x0 x1 x2 .
x2
∈
ap
x0
x1
⟶
setsum
x1
x2
∈
x0
Theorem
47a16..
:
∀ x0 x1 .
tuple_p
x0
x1
⟶
x1
=
lam
x0
(
ap
x1
)
(proof)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
55df5..
:
∀ x0 .
∀ x1 :
ι → ι
.
tuple_p
x0
(
lam
x0
x1
)
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
59caa..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 .
∀ x3 :
ι → ο
.
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
tuple_p
(
x1
x4
)
x5
⟶
(
∀ x6 .
x6
∈
x1
x4
⟶
x3
(
ap
x5
x6
)
)
⟶
x3
(
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
x4
x5
)
)
)
⟶
x3
x2
Theorem
83bd8..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
tuple_p
(
x1
x2
)
x3
⟶
(
∀ x4 .
x4
∈
x1
x2
⟶
59caa..
x0
x1
(
ap
x3
x4
)
)
⟶
59caa..
x0
x1
(
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
)
(proof)
Theorem
32b0a..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
tuple_p
(
x1
x3
)
x4
⟶
(
∀ x5 .
x5
∈
x1
x3
⟶
59caa..
x0
x1
(
ap
x4
x5
)
)
⟶
(
∀ x5 .
x5
∈
x1
x3
⟶
x2
(
ap
x4
x5
)
)
⟶
x2
(
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
)
)
⟶
∀ x3 .
59caa..
x0
x1
x3
⟶
x2
x3
(proof)
Param
ZF_closed
ZF_closed
:
ι
→
ο
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
ZF_ordsucc_closed
ZF_ordsucc_closed
:
∀ x0 .
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
x0
Theorem
ebd65..
:
∀ x0 .
ZF_closed
x0
⟶
0
∈
x0
⟶
∀ x1 .
nat_p
x1
⟶
x1
∈
x0
(proof)
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
c59b3..
ZF_Sigma_closed
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
lam
x1
x2
∈
x0
Theorem
b6a89..
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
tuple_p
x1
x2
⟶
(
∀ x3 .
x3
∈
x1
⟶
ap
x2
x3
∈
x0
)
⟶
x2
∈
x0
(proof)
Known
nat_2
nat_2
:
nat_p
2
Known
tuple_p_2_tuple
tuple_p_2_tuple
:
∀ x0 x1 .
tuple_p
2
(
lam
2
(
λ x2 .
If_i
(
x2
=
0
)
x0
x1
)
)
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Theorem
9f645..
:
∀ x0 .
TransSet
x0
⟶
ZF_closed
x0
⟶
0
∈
x0
⟶
∀ x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
∈
x0
)
⟶
∀ x3 .
59caa..
x1
x2
x3
⟶
x3
∈
x0
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Param
famunion
famunion
:
ι
→
(
ι
→
ι
) →
ι
Param
Sing
Sing
:
ι
→
ι
Definition
c8f46..
:=
λ x0 .
λ x1 :
ι → ι
.
Sep
(
prim6
(
UPair
x0
(
famunion
x0
(
λ x2 .
Sing
(
x1
x2
)
)
)
)
)
(
59caa..
x0
x1
)
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Theorem
0bd77..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
c8f46..
x0
x1
⟶
59caa..
x0
x1
x2
(proof)
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
UnivOf_TransSet
UnivOf_TransSet
:
∀ x0 .
TransSet
(
prim6
x0
)
Known
UnivOf_ZF_closed
UnivOf_ZF_closed
:
∀ x0 .
ZF_closed
(
prim6
x0
)
Known
6aa34..
UnivOf_Subq_closed
:
∀ x0 x1 .
x1
∈
prim6
x0
⟶
∀ x2 .
x2
⊆
x1
⟶
x2
∈
prim6
x0
Known
UnivOf_In
UnivOf_In
:
∀ x0 .
x0
∈
prim6
x0
Known
Subq_Empty
Subq_Empty
:
∀ x0 .
0
⊆
x0
Known
famunionI
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Theorem
2224e..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
59caa..
x0
x1
x2
⟶
x2
∈
c8f46..
x0
x1
(proof)
Theorem
4db94..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
tuple_p
(
x1
x2
)
x3
⟶
(
∀ x4 .
x4
∈
x1
x2
⟶
ap
x3
x4
∈
c8f46..
x0
x1
)
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
c8f46..
x0
x1
(proof)
Theorem
34323..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
tuple_p
(
x1
x3
)
x4
⟶
(
∀ x5 .
x5
∈
x1
x3
⟶
ap
x4
x5
∈
c8f46..
x0
x1
)
⟶
(
∀ x5 .
x5
∈
x1
x3
⟶
x2
(
ap
x4
x5
)
)
⟶
x2
(
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
)
)
⟶
∀ x3 .
x3
∈
c8f46..
x0
x1
⟶
x2
x3
(proof)
Definition
c40a3..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι →
ι → ι
.
λ x3 x4 .
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
tuple_p
(
x1
x6
)
x7
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
x9
∈
x1
x6
⟶
x5
(
ap
x7
x9
)
(
x8
x9
)
)
⟶
x5
(
lam
2
(
λ x9 .
If_i
(
x9
=
0
)
x6
x7
)
)
(
x2
x6
x7
(
lam
(
x1
x6
)
x8
)
)
)
⟶
x5
x3
x4
Theorem
d7522..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι →
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
tuple_p
(
x1
x3
)
x4
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
x1
x3
⟶
c40a3..
x0
x1
x2
(
ap
x4
x6
)
(
x5
x6
)
)
⟶
c40a3..
x0
x1
x2
(
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
x3
x4
)
)
(
x2
x3
x4
(
lam
(
x1
x3
)
x5
)
)
(proof)
Theorem
0e173..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
tuple_p
(
x1
x4
)
x5
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
x7
∈
x1
x4
⟶
c40a3..
x0
x1
x2
(
ap
x5
x7
)
(
x6
x7
)
)
⟶
(
∀ x7 .
x7
∈
x1
x4
⟶
x3
(
ap
x5
x7
)
(
x6
x7
)
)
⟶
x3
(
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
x4
x5
)
)
(
x2
x4
x5
(
lam
(
x1
x4
)
x6
)
)
)
⟶
∀ x4 x5 .
c40a3..
x0
x1
x2
x4
x5
⟶
x3
x4
x5
(proof)
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
4d5b3..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι →
ι → ι
.
∀ x3 .
x3
∈
c8f46..
x0
x1
⟶
∀ x4 : ο .
(
∀ x5 .
c40a3..
x0
x1
x2
x3
x5
⟶
x4
)
⟶
x4
(proof)
Definition
e2778..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι →
ι → ι
.
λ x3 .
prim0
(
c40a3..
x0
x1
x2
x3
)
Theorem
be97b..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι →
ι → ι
.
∀ x3 .
x3
∈
c8f46..
x0
x1
⟶
c40a3..
x0
x1
x2
x3
(
e2778..
x0
x1
x2
x3
)
(proof)
Known
tuple_2_inj
tuple_2_inj
:
∀ x0 x1 x2 x3 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x0
x1
)
=
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x2
x3
)
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Theorem
9a9e0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι →
ι → ι
.
∀ x3 .
x3
∈
c8f46..
x0
x1
⟶
∀ x4 .
c40a3..
x0
x1
x2
x3
x4
⟶
∀ x5 x6 .
c40a3..
x0
x1
x2
x5
x6
⟶
x3
=
x5
⟶
x4
=
x6
(proof)
Theorem
2ca51..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι →
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
tuple_p
(
x1
x3
)
x4
⟶
(
∀ x5 .
x5
∈
x1
x3
⟶
ap
x4
x5
∈
c8f46..
x0
x1
)
⟶
e2778..
x0
x1
x2
(
lam
2
(
λ x6 .
If_i
(
x6
=
0
)
x3
x4
)
)
=
x2
x3
x4
(
lam
(
x1
x3
)
(
λ x6 .
e2778..
x0
x1
x2
(
ap
x4
x6
)
)
)
(proof)
previous assets