| current assets |
|---|
67feb../035a5.. bday: 4897 doc published by Pr6Pc..Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Definition bijbij := λ x0 x1 . λ x2 : ι → ι . and (and (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4)) (∀ x3 . x3 ∈ x1 ⟶ ∃ x4 . and (x4 ∈ x0) (x2 x4 = x3))Definition surjsurj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) (∀ x3 . x3 ∈ x1 ⟶ ∃ x4 . and (x4 ∈ x0) (x2 x4 = x3))Known andI : ∀ x0 x1 : ο . x0 ⟶ x1 ⟶ and x0 x1Known bij_surjbij_surj : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2 ⟶ surj x0 x1 x2Definition FalseFalse := ∀ x0 : ο . x0Definition not := λ x0 : ο . x0 ⟶ FalseParam omegaomega : ιParam SepSep : ι → (ι → ο) → ιDefinition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ x0 ⟶ x1 x2 ⟶ x2 ∈ Sep x0 x1Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ Sep x0 x1 ⟶ x1 x2Definition Subq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Known PowerIPowerI : ∀ x0 x1 . x1 ⊆ x0 ⟶ x1 ∈ prim4 x0Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ Sep x0 x1 ⟶ x2 ∈ x0Theorem form100_22_v3form100_22_v3 : ∀ x0 : ι → ι . not (surj omega (prim4 omega) x0)...
Param ccad8.. : ι → ι → οKnown 536c8.. : ∀ x0 x1 . ccad8.. x0 x1 ⟶ ∃ x2 : ι → ι . bij x0 x1 x2Theorem 651e5.. : not (ccad8.. omega (prim4 omega))...
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3 ∈ x0 ⟶ x2 x3 ∈ x1) (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 = x2 x4 ⟶ x3 = x4)Param ReplSepReplSep : ι → (ι → ο) → (ι → ι) → ιKnown ReplSepIReplSepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3 ∈ x0 ⟶ x1 x3 ⟶ x2 x3 ∈ ReplSep x0 x1 x2Known ReplSepE_impredReplSepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3 ∈ ReplSep x0 x1 x2 ⟶ ∀ x4 : ο . (∀ x5 . x5 ∈ x0 ⟶ x1 x5 ⟶ x3 = x2 x5 ⟶ x4) ⟶ x4Theorem form100_22_v2form100_22_v2 : ∀ x0 : ι → ι . not (inj (prim4 omega) omega x0)...
|
|