current assets |
---|
934f2../1535f.. bday: 4923 doc published by Pr6Pc..Param lamSigma : ι → (ι → ι) → ιParam ordsuccordsucc : ι → ιParam If_iIf_i : ο → ι → ι → ιParam encode_cencode_c : ι → ((ι → ο) → ο) → ιParam SepSep : ι → (ι → ο) → ιDefinition pack_c_p_e := λ x0 . λ x1 : (ι → ο) → ο . λ x2 : ι → ο . λ x3 . lam 4 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) (encode_c x0 x1) (If_i (x4 = 2) (Sep x0 x2) x3)))Param apap : ι → ι → ιKnown tuple_4_0_eqtuple_4_0_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 0 = x0Theorem pack_c_p_e_0_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . ∀ x4 . x0 = pack_c_p_e x1 x2 x3 x4 ⟶ x1 = ap x0 0 (proof)Theorem pack_c_p_e_0_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . ∀ x3 . x0 = ap (pack_c_p_e x0 x1 x2 x3) 0 (proof)Param decode_cdecode_c : ι → (ι → ο) → οKnown tuple_4_1_eqtuple_4_1_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 1 = x1Known decode_encode_cdecode_encode_c : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . (∀ x3 . x2 x3 ⟶ x3 ∈ x0) ⟶ decode_c (encode_c x0 x1) x2 = x1 x2Theorem pack_c_p_e_1_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . ∀ x4 . x0 = pack_c_p_e x1 x2 x3 x4 ⟶ ∀ x5 : ι → ο . (∀ x6 . x5 x6 ⟶ x6 ∈ x1) ⟶ x2 x5 = decode_c (ap x0 1) x5 (proof)Theorem pack_c_p_e_1_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . ∀ x3 . ∀ x4 : ι → ο . (∀ x5 . x4 x5 ⟶ x5 ∈ x0) ⟶ x1 x4 = decode_c (ap (pack_c_p_e x0 x1 x2 x3) 1) x4 (proof)Param decode_pdecode_p : ι → ι → οKnown tuple_4_2_eqtuple_4_2_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 2 = x2Known decode_encode_pdecode_encode_p : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2 ∈ x0 ⟶ decode_p (Sep x0 x1) x2 = x1 x2Theorem pack_c_p_e_2_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . ∀ x4 . x0 = pack_c_p_e x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ x3 x5 = decode_p (ap x0 2) x5 (proof)Theorem pack_c_p_e_2_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . ∀ x3 x4 . x4 ∈ x0 ⟶ x2 x4 = decode_p (ap (pack_c_p_e x0 x1 x2 x3) 2) x4 (proof)Known tuple_4_3_eqtuple_4_3_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 3 = x3Theorem pack_c_p_e_3_eq : ∀ x0 x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . ∀ x4 . x0 = pack_c_p_e x1 x2 x3 x4 ⟶ x4 = ap x0 3 (proof)Theorem pack_c_p_e_3_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . ∀ x3 . x3 = ap (pack_c_p_e x0 x1 x2 x3) 3 (proof)Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x1 ⟶ x2) ⟶ x2Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0 ⟶ x1 ⟶ x2 ⟶ x3 ⟶ and (and (and x0 x1) x2) x3Theorem pack_c_p_e_inj : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 x5 : ι → ο . ∀ x6 x7 . pack_c_p_e x0 x2 x4 x6 = pack_c_p_e x1 x3 x5 x7 ⟶ and (and (and (x0 = x1) (∀ x8 : ι → ο . (∀ x9 . x8 x9 ⟶ x9 ∈ x0) ⟶ x2 x8 = x3 x8)) (∀ x8 . x8 ∈ x0 ⟶ x4 x8 = x5 x8)) (x6 = x7) (proof)Param iffiff : ο → ο → οKnown encode_p_extencode_p_ext : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3 ∈ x0 ⟶ iff (x1 x3) (x2 x3)) ⟶ Sep x0 x1 = Sep x0 x2Known encode_c_extencode_c_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . (∀ x3 : ι → ο . (∀ x4 . x3 x4 ⟶ x4 ∈ x0) ⟶ iff (x1 x3) (x2 x3)) ⟶ encode_c x0 x1 = encode_c x0 x2Theorem pack_c_p_e_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . ∀ x3 x4 : ι → ο . ∀ x5 . (∀ x6 : ι → ο . (∀ x7 . x6 x7 ⟶ x7 ∈ x0) ⟶ iff (x1 x6) (x2 x6)) ⟶ (∀ x6 . x6 ∈ x0 ⟶ iff (x3 x6) (x4 x6)) ⟶ pack_c_p_e x0 x1 x3 x5 = pack_c_p_e x0 x2 x4 x5 (proof)Definition struct_c_p_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . ∀ x4 : ι → ο . ∀ x5 . x5 ∈ x2 ⟶ x1 (pack_c_p_e x2 x3 x4 x5)) ⟶ x1 x0Theorem pack_struct_c_p_e_I : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . ∀ x3 . x3 ∈ x0 ⟶ struct_c_p_e (pack_c_p_e x0 x1 x2 x3) (proof)Theorem pack_struct_c_p_e_E3 : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . ∀ x3 . struct_c_p_e (pack_c_p_e x0 x1 x2 x3) ⟶ x3 ∈ x0 (proof)Known iff_refliff_refl : ∀ x0 : ο . iff x0 x0Theorem struct_c_p_e_eta : ∀ x0 . struct_c_p_e x0 ⟶ x0 = pack_c_p_e (ap x0 0) (decode_c (ap x0 1)) (decode_p (ap x0 2)) (ap x0 3) (proof)Definition unpack_c_p_e_i := λ x0 . λ x1 : ι → ((ι → ο) → ο) → (ι → ο) → ι → ι . x1 (ap x0 0) (decode_c (ap x0 1)) (decode_p (ap x0 2)) (ap x0 3)Theorem unpack_c_p_e_i_eq : ∀ x0 : ι → ((ι → ο) → ο) → (ι → ο) → ι → ι . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . ∀ x4 . (∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . (∀ x7 . x6 x7 ⟶ x7 ∈ x1) ⟶ iff (x2 x6) (x5 x6)) ⟶ ∀ x6 : ι → ο . (∀ x7 . x7 ∈ x1 ⟶ iff (x3 x7) (x6 x7)) ⟶ x0 x1 x5 x6 x4 = x0 x1 x2 x3 x4) ⟶ unpack_c_p_e_i (pack_c_p_e x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)Definition unpack_c_p_e_o := λ x0 . λ x1 : ι → ((ι → ο) → ο) → (ι → ο) → ι → ο . x1 (ap x0 0) (decode_c (ap x0 1)) (decode_p (ap x0 2)) (ap x0 3)Theorem unpack_c_p_e_o_eq : ∀ x0 : ι → ((ι → ο) → ο) → (ι → ο) → ι → ο . ∀ x1 . ∀ x2 : (ι → ο) → ο . ∀ x3 : ι → ο . ∀ x4 . (∀ x5 : (ι → ο) → ο . (∀ x6 : ι → ο . (∀ x7 . x6 x7 ⟶ x7 ∈ x1) ⟶ iff (x2 x6) (x5 x6)) ⟶ ∀ x6 : ι → ο . (∀ x7 . x7 ∈ x1 ⟶ iff (x3 x7) (x6 x7)) ⟶ x0 x1 x5 x6 x4 = x0 x1 x2 x3 x4) ⟶ unpack_c_p_e_o (pack_c_p_e x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)Param encode_bencode_b : ι → CT2 ιDefinition pack_b_b_b := λ x0 . λ x1 x2 x3 : ι → ι → ι . lam 4 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) (encode_b x0 x1) (If_i (x4 = 2) (encode_b x0 x2) (encode_b x0 x3))))Theorem pack_b_b_b_0_eq : ∀ x0 x1 . ∀ x2 x3 x4 : ι → ι → ι . x0 = pack_b_b_b x1 x2 x3 x4 ⟶ x1 = ap x0 0 (proof)Theorem pack_b_b_b_0_eq2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . x0 = ap (pack_b_b_b x0 x1 x2 x3) 0 (proof)Param decode_bdecode_b : ι → ι → ι → ιKnown decode_encode_bdecode_encode_b : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ decode_b (encode_b x0 x1) x2 x3 = x1 x2 x3Theorem pack_b_b_b_1_eq : ∀ x0 x1 . ∀ x2 x3 x4 : ι → ι → ι . x0 = pack_b_b_b x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x2 x5 x6 = decode_b (ap x0 1) x5 x6 (proof)Theorem pack_b_b_b_1_eq2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x1 x4 x5 = decode_b (ap (pack_b_b_b x0 x1 x2 x3) 1) x4 x5 (proof)Theorem pack_b_b_b_2_eq : ∀ x0 x1 . ∀ x2 x3 x4 : ι → ι → ι . x0 = pack_b_b_b x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x3 x5 x6 = decode_b (ap x0 2) x5 x6 (proof)Theorem pack_b_b_b_2_eq2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x2 x4 x5 = decode_b (ap (pack_b_b_b x0 x1 x2 x3) 2) x4 x5 (proof)Theorem pack_b_b_b_3_eq : ∀ x0 x1 . ∀ x2 x3 x4 : ι → ι → ι . x0 = pack_b_b_b x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x4 x5 x6 = decode_b (ap x0 3) x5 x6 (proof)Theorem pack_b_b_b_3_eq2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 x4 x5 = decode_b (ap (pack_b_b_b x0 x1 x2 x3) 3) x4 x5 (proof)Theorem pack_b_b_b_inj : ∀ x0 x1 . ∀ x2 x3 x4 x5 x6 x7 : ι → ι → ι . pack_b_b_b x0 x2 x4 x6 = pack_b_b_b x1 x3 x5 x7 ⟶ and (and (and (x0 = x1) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x2 x8 x9 = x3 x8 x9)) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x4 x8 x9 = x5 x8 x9)) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x6 x8 x9 = x7 x8 x9) (proof)Known encode_b_extencode_b_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x1 x3 x4 = x2 x3 x4) ⟶ encode_b x0 x1 = encode_b x0 x2Theorem pack_b_b_b_ext : ∀ x0 . ∀ x1 x2 x3 x4 x5 x6 : ι → ι → ι . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x1 x7 x8 = x2 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x4 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x5 x7 x8 = x6 x7 x8) ⟶ pack_b_b_b x0 x1 x3 x5 = pack_b_b_b x0 x2 x4 x6 (proof)Definition struct_b_b_b := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ ∀ x4 : ι → ι → ι . (∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ x4 x5 x6 ∈ x2) ⟶ ∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x2 ⟶ ∀ x7 . x7 ∈ x2 ⟶ x5 x6 x7 ∈ x2) ⟶ x1 (pack_b_b_b x2 x3 x4 x5)) ⟶ x1 x0Theorem pack_struct_b_b_b_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 x4 ∈ x0) ⟶ ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 x4 x5 ∈ x0) ⟶ struct_b_b_b (pack_b_b_b x0 x1 x2 x3) (proof)Theorem pack_struct_b_b_b_E1 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . struct_b_b_b (pack_b_b_b x0 x1 x2 x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x1 x4 x5 ∈ x0 (proof)Theorem pack_struct_b_b_b_E2 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . struct_b_b_b (pack_b_b_b x0 x1 x2 x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x2 x4 x5 ∈ x0 (proof)Theorem pack_struct_b_b_b_E3 : ∀ x0 . ∀ x1 x2 x3 : ι → ι → ι . struct_b_b_b (pack_b_b_b x0 x1 x2 x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 x4 x5 ∈ x0 (proof)Theorem struct_b_b_b_eta : ∀ x0 . struct_b_b_b x0 ⟶ x0 = pack_b_b_b (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_b (ap x0 3)) (proof)Definition unpack_b_b_b_i := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → ι . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_b (ap x0 3))Theorem unpack_b_b_b_i_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → ι . ∀ x1 . ∀ x2 x3 x4 : ι → ι → ι . (∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = x5 x6 x7) ⟶ ∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x3 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x4 x8 x9 = x7 x8 x9) ⟶ x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4) ⟶ unpack_b_b_b_i (pack_b_b_b x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)Definition unpack_b_b_b_o := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → ο . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_b (ap x0 3))Theorem unpack_b_b_b_o_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → ο . ∀ x1 . ∀ x2 x3 x4 : ι → ι → ι . (∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = x5 x6 x7) ⟶ ∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x3 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ι . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ x4 x8 x9 = x7 x8 x9) ⟶ x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4) ⟶ unpack_b_b_b_o (pack_b_b_b x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)Definition pack_b_b_u := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 : ι → ι . lam 4 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) (encode_b x0 x1) (If_i (x4 = 2) (encode_b x0 x2) (lam x0 x3))))Theorem pack_b_b_u_0_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . x0 = pack_b_b_u x1 x2 x3 x4 ⟶ x1 = ap x0 0 (proof)Theorem pack_b_b_u_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . x0 = ap (pack_b_b_u x0 x1 x2 x3) 0 (proof)Theorem pack_b_b_u_1_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . x0 = pack_b_b_u x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x2 x5 x6 = decode_b (ap x0 1) x5 x6 (proof)Theorem pack_b_b_u_1_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x1 x4 x5 = decode_b (ap (pack_b_b_u x0 x1 x2 x3) 1) x4 x5 (proof)Theorem pack_b_b_u_2_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . x0 = pack_b_b_u x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x3 x5 x6 = decode_b (ap x0 2) x5 x6 (proof)Theorem pack_b_b_u_2_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x2 x4 x5 = decode_b (ap (pack_b_b_u x0 x1 x2 x3) 2) x4 x5 (proof)Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2 ∈ x0 ⟶ ap (lam x0 x1) x2 = x1 x2Theorem pack_b_b_u_3_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . x0 = pack_b_b_u x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ x4 x5 = ap (ap x0 3) x5 (proof)Theorem pack_b_b_u_3_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 . x4 ∈ x0 ⟶ x3 x4 = ap (ap (pack_b_b_u x0 x1 x2 x3) 3) x4 (proof)Theorem pack_b_b_u_inj : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι . pack_b_b_u x0 x2 x4 x6 = pack_b_b_u x1 x3 x5 x7 ⟶ and (and (and (x0 = x1) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x2 x8 x9 = x3 x8 x9)) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x4 x8 x9 = x5 x8 x9)) (∀ x8 . x8 ∈ x0 ⟶ x6 x8 = x7 x8) (proof)Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3 ∈ x0 ⟶ x1 x3 = x2 x3) ⟶ lam x0 x1 = lam x0 x2Theorem pack_b_b_u_ext : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x1 x7 x8 = x2 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x4 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ x5 x7 = x6 x7) ⟶ pack_b_b_u x0 x1 x3 x5 = pack_b_b_u x0 x2 x4 x6 (proof)Definition struct_b_b_u := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ ∀ x4 : ι → ι → ι . (∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ x4 x5 x6 ∈ x2) ⟶ ∀ x5 : ι → ι . (∀ x6 . x6 ∈ x2 ⟶ x5 x6 ∈ x2) ⟶ x1 (pack_b_b_u x2 x3 x4 x5)) ⟶ x1 x0Theorem pack_struct_b_b_u_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 x4 ∈ x0) ⟶ ∀ x3 : ι → ι . (∀ x4 . x4 ∈ x0 ⟶ x3 x4 ∈ x0) ⟶ struct_b_b_u (pack_b_b_u x0 x1 x2 x3) (proof)Theorem pack_struct_b_b_u_E1 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . struct_b_b_u (pack_b_b_u x0 x1 x2 x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x1 x4 x5 ∈ x0 (proof)Theorem pack_struct_b_b_u_E2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . struct_b_b_u (pack_b_b_u x0 x1 x2 x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x2 x4 x5 ∈ x0 (proof)Theorem pack_struct_b_b_u_E3 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι . struct_b_b_u (pack_b_b_u x0 x1 x2 x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ x3 x4 ∈ x0 (proof)Theorem struct_b_b_u_eta : ∀ x0 . struct_b_b_u x0 ⟶ x0 = pack_b_b_u (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3)) (proof)Definition unpack_b_b_u_i := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3))Theorem unpack_b_b_u_i_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . (∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = x5 x6 x7) ⟶ ∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x3 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι . (∀ x8 . x8 ∈ x1 ⟶ x4 x8 = x7 x8) ⟶ x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4) ⟶ unpack_b_b_u_i (pack_b_b_u x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)Definition unpack_b_b_u_o := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ο . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (ap (ap x0 3))Theorem unpack_b_b_u_o_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι) → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι . (∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = x5 x6 x7) ⟶ ∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x3 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι . (∀ x8 . x8 ∈ x1 ⟶ x4 x8 = x7 x8) ⟶ x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4) ⟶ unpack_b_b_u_o (pack_b_b_u x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)Param encode_rencode_r : ι → (ι → ι → ο) → ιDefinition pack_b_b_r := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 : ι → ι → ο . lam 4 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) (encode_b x0 x1) (If_i (x4 = 2) (encode_b x0 x2) (encode_r x0 x3))))Theorem pack_b_b_r_0_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . x0 = pack_b_b_r x1 x2 x3 x4 ⟶ x1 = ap x0 0 (proof)Theorem pack_b_b_r_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι → ο . x4 x0 (ap (pack_b_b_r x0 x1 x2 x3) 0) ⟶ x4 (ap (pack_b_b_r x0 x1 x2 x3) 0) x0 (proof)Theorem pack_b_b_r_1_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . x0 = pack_b_b_r x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x2 x5 x6 = decode_b (ap x0 1) x5 x6 (proof)Theorem pack_b_b_r_1_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x1 x4 x5 = decode_b (ap (pack_b_b_r x0 x1 x2 x3) 1) x4 x5 (proof)Theorem pack_b_b_r_2_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . x0 = pack_b_b_r x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x3 x5 x6 = decode_b (ap x0 2) x5 x6 (proof)Theorem pack_b_b_r_2_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x2 x4 x5 = decode_b (ap (pack_b_b_r x0 x1 x2 x3) 2) x4 x5 (proof)Param decode_rdecode_r : ι → ι → ι → οKnown decode_encode_rdecode_encode_r : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ decode_r (encode_r x0 x1) x2 x3 = x1 x2 x3Theorem pack_b_b_r_3_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . x0 = pack_b_b_r x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x4 x5 x6 = decode_r (ap x0 3) x5 x6 (proof)Theorem pack_b_b_r_3_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x3 x4 x5 = decode_r (ap (pack_b_b_r x0 x1 x2 x3) 3) x4 x5 (proof)Theorem pack_b_b_r_inj : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ι → ο . pack_b_b_r x0 x2 x4 x6 = pack_b_b_r x1 x3 x5 x7 ⟶ and (and (and (x0 = x1) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x2 x8 x9 = x3 x8 x9)) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x4 x8 x9 = x5 x8 x9)) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x6 x8 x9 = x7 x8 x9) (proof)Known encode_r_extencode_r_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ iff (x1 x3 x4) (x2 x3 x4)) ⟶ encode_r x0 x1 = encode_r x0 x2Theorem pack_b_b_r_ext : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ι → ο . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x1 x7 x8 = x2 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x4 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ iff (x5 x7 x8) (x6 x7 x8)) ⟶ pack_b_b_r x0 x1 x3 x5 = pack_b_b_r x0 x2 x4 x6 (proof)Definition struct_b_b_r := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ ∀ x4 : ι → ι → ι . (∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ x4 x5 x6 ∈ x2) ⟶ ∀ x5 : ι → ι → ο . x1 (pack_b_b_r x2 x3 x4 x5)) ⟶ x1 x0Theorem pack_struct_b_b_r_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 x4 ∈ x0) ⟶ ∀ x3 : ι → ι → ο . struct_b_b_r (pack_b_b_r x0 x1 x2 x3) (proof)Theorem pack_struct_b_b_r_E1 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . struct_b_b_r (pack_b_b_r x0 x1 x2 x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x1 x4 x5 ∈ x0 (proof)Theorem pack_struct_b_b_r_E2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ι → ο . struct_b_b_r (pack_b_b_r x0 x1 x2 x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x2 x4 x5 ∈ x0 (proof)Theorem struct_b_b_r_eta : ∀ x0 . struct_b_b_r x0 ⟶ x0 = pack_b_b_r (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_r (ap x0 3)) (proof)Definition unpack_b_b_r_i := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → ι . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_r (ap x0 3))Theorem unpack_b_b_r_i_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . (∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = x5 x6 x7) ⟶ ∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x3 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ο . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ iff (x4 x8 x9) (x7 x8 x9)) ⟶ x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4) ⟶ unpack_b_b_r_i (pack_b_b_r x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)Definition unpack_b_b_r_o := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → ο . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_r (ap x0 3))Theorem unpack_b_b_r_o_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ο) → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ι → ο . (∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = x5 x6 x7) ⟶ ∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x3 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ι → ο . (∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ iff (x4 x8 x9) (x7 x8 x9)) ⟶ x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4) ⟶ unpack_b_b_r_o (pack_b_b_r x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)Definition pack_b_b_p := λ x0 . λ x1 x2 : ι → ι → ι . λ x3 : ι → ο . lam 4 (λ x4 . If_i (x4 = 0) x0 (If_i (x4 = 1) (encode_b x0 x1) (If_i (x4 = 2) (encode_b x0 x2) (Sep x0 x3))))Theorem pack_b_b_p_0_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ο . x0 = pack_b_b_p x1 x2 x3 x4 ⟶ x1 = ap x0 0 (proof)Theorem pack_b_b_p_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ο . x0 = ap (pack_b_b_p x0 x1 x2 x3) 0 (proof)Theorem pack_b_b_p_1_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ο . x0 = pack_b_b_p x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x2 x5 x6 = decode_b (ap x0 1) x5 x6 (proof)Theorem pack_b_b_p_1_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ο . ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x1 x4 x5 = decode_b (ap (pack_b_b_p x0 x1 x2 x3) 1) x4 x5 (proof)Theorem pack_b_b_p_2_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ο . x0 = pack_b_b_p x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ x3 x5 x6 = decode_b (ap x0 2) x5 x6 (proof)Theorem pack_b_b_p_2_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ο . ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x2 x4 x5 = decode_b (ap (pack_b_b_p x0 x1 x2 x3) 2) x4 x5 (proof)Theorem pack_b_b_p_3_eq : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ο . x0 = pack_b_b_p x1 x2 x3 x4 ⟶ ∀ x5 . x5 ∈ x1 ⟶ x4 x5 = decode_p (ap x0 3) x5 (proof)Theorem pack_b_b_p_3_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ο . ∀ x4 . x4 ∈ x0 ⟶ x3 x4 = decode_p (ap (pack_b_b_p x0 x1 x2 x3) 3) x4 (proof)Theorem pack_b_b_p_inj : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ι . ∀ x6 x7 : ι → ο . pack_b_b_p x0 x2 x4 x6 = pack_b_b_p x1 x3 x5 x7 ⟶ and (and (and (x0 = x1) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x2 x8 x9 = x3 x8 x9)) (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ x4 x8 x9 = x5 x8 x9)) (∀ x8 . x8 ∈ x0 ⟶ x6 x8 = x7 x8) (proof)Theorem pack_b_b_p_ext : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ι . ∀ x5 x6 : ι → ο . (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x1 x7 x8 = x2 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ x3 x7 x8 = x4 x7 x8) ⟶ (∀ x7 . x7 ∈ x0 ⟶ iff (x5 x7) (x6 x7)) ⟶ pack_b_b_p x0 x1 x3 x5 = pack_b_b_p x0 x2 x4 x6 (proof)Definition struct_b_b_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . x4 ∈ x2 ⟶ ∀ x5 . x5 ∈ x2 ⟶ x3 x4 x5 ∈ x2) ⟶ ∀ x4 : ι → ι → ι . (∀ x5 . x5 ∈ x2 ⟶ ∀ x6 . x6 ∈ x2 ⟶ x4 x5 x6 ∈ x2) ⟶ ∀ x5 : ι → ο . x1 (pack_b_b_p x2 x3 x4 x5)) ⟶ x1 x0Theorem pack_struct_b_b_p_I : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ ∀ x2 : ι → ι → ι . (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 x3 x4 ∈ x0) ⟶ ∀ x3 : ι → ο . struct_b_b_p (pack_b_b_p x0 x1 x2 x3) (proof)Theorem pack_struct_b_b_p_E1 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ο . struct_b_b_p (pack_b_b_p x0 x1 x2 x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x1 x4 x5 ∈ x0 (proof)Theorem pack_struct_b_b_p_E2 : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 : ι → ο . struct_b_b_p (pack_b_b_p x0 x1 x2 x3) ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x2 x4 x5 ∈ x0 (proof)Theorem struct_b_b_p_eta : ∀ x0 . struct_b_b_p x0 ⟶ x0 = pack_b_b_p (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_p (ap x0 3)) (proof)Definition unpack_b_b_p_i := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ο) → ι . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_p (ap x0 3))Theorem unpack_b_b_p_i_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ο) → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ο . (∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = x5 x6 x7) ⟶ ∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x3 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ο . (∀ x8 . x8 ∈ x1 ⟶ iff (x4 x8) (x7 x8)) ⟶ x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4) ⟶ unpack_b_b_p_i (pack_b_b_p x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)Definition unpack_b_b_p_o := λ x0 . λ x1 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ο) → ο . x1 (ap x0 0) (decode_b (ap x0 1)) (decode_b (ap x0 2)) (decode_p (ap x0 3))Theorem unpack_b_b_p_o_eq : ∀ x0 : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ο) → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 : ι → ο . (∀ x5 : ι → ι → ι . (∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ x2 x6 x7 = x5 x6 x7) ⟶ ∀ x6 : ι → ι → ι . (∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ x3 x7 x8 = x6 x7 x8) ⟶ ∀ x7 : ι → ο . (∀ x8 . x8 ∈ x1 ⟶ iff (x4 x8) (x7 x8)) ⟶ x0 x1 x5 x6 x7 = x0 x1 x2 x3 x4) ⟶ unpack_b_b_p_o (pack_b_b_p x1 x2 x3 x4) x0 = x0 x1 x2 x3 x4 (proof)
|
|