Search for blocks/addresses/...
Proofgold Address
address
PUdQeWPDz7BDz6DLifrWEjGmC8XjrAk8NiC
total
0
mg
-
conjpub
-
current assets
a8c60..
/
d534c..
bday:
2853
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
eb53d..
:
ι
→
CT2
ι
Definition
71338..
:=
λ x0 .
λ x1 x2 x3 :
ι →
ι → ι
.
λ x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
eb53d..
x0
x3
)
x4
)
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
7d2e2..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
4a7ef..
=
x0
Theorem
62bfa..
:
∀ x0 x1 .
∀ x2 x3 x4 :
ι →
ι → ι
.
∀ x5 .
x0
=
71338..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
5bb38..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
x0
=
f482f..
(
71338..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Param
e3162..
:
ι
→
ι
→
ι
→
ι
Known
504a8..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
35054..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
e3162..
(
eb53d..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
1046e..
:
∀ x0 x1 .
∀ x2 x3 x4 :
ι →
ι → ι
.
∀ x5 .
x0
=
71338..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
x7
(proof)
Theorem
d1558..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
e3162..
(
f482f..
(
71338..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Known
fb20c..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Theorem
81f1e..
:
∀ x0 x1 .
∀ x2 x3 x4 :
ι →
ι → ι
.
∀ x5 .
x0
=
71338..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
d4b1d..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
71338..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Known
431f3..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
Theorem
8a20d..
:
∀ x0 x1 .
∀ x2 x3 x4 :
ι →
ι → ι
.
∀ x5 .
x0
=
71338..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x4
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
x7
(proof)
Theorem
9bed1..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
e3162..
(
f482f..
(
71338..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
x6
(proof)
Known
ffdcd..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
Theorem
9d568..
:
∀ x0 x1 .
∀ x2 x3 x4 :
ι →
ι → ι
.
∀ x5 .
x0
=
71338..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
bc3d6..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
x4
=
f482f..
(
71338..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
82ac9..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 x6 x7 :
ι →
ι → ι
.
∀ x8 x9 .
71338..
x0
x2
x4
x6
x8
=
71338..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
x10
x11
=
x7
x10
x11
)
)
(
x8
=
x9
)
(proof)
Known
8fdaf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
eb53d..
x0
x1
=
eb53d..
x0
x2
Theorem
9da8a..
:
∀ x0 .
∀ x1 x2 x3 x4 x5 x6 :
ι →
ι → ι
.
∀ x7 .
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x1
x8
x9
=
x2
x8
x9
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x3
x8
x9
=
x4
x8
x9
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x5
x8
x9
=
x6
x8
x9
)
⟶
71338..
x0
x1
x3
x5
x7
=
71338..
x0
x2
x4
x6
x7
(proof)
Definition
23f55..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
prim1
x6
x2
⟶
∀ x7 .
prim1
x7
x2
⟶
prim1
(
x5
x6
x7
)
x2
)
⟶
∀ x6 .
prim1
x6
x2
⟶
x1
(
71338..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
5991f..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x3
x4
x5
)
x0
)
⟶
∀ x4 .
prim1
x4
x0
⟶
23f55..
(
71338..
x0
x1
x2
x3
x4
)
(proof)
Theorem
21112..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
23f55..
(
71338..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x1
x5
x6
)
x0
(proof)
Theorem
ae691..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
23f55..
(
71338..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Theorem
d8dcc..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
23f55..
(
71338..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x3
x5
x6
)
x0
(proof)
Theorem
53049..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
23f55..
(
71338..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
8b133..
:
∀ x0 .
23f55..
x0
⟶
x0
=
71338..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
9fbe5..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
9aabc..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 x3 x4 :
ι →
ι → ι
.
∀ x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
x4
x9
x10
=
x8
x9
x10
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
9fbe5..
(
71338..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
7765f..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
10d52..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ο
.
∀ x1 .
∀ x2 x3 x4 :
ι →
ι → ι
.
∀ x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
x4
x9
x10
=
x8
x9
x10
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
7765f..
(
71338..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
37dbe..
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
λ x3 x4 :
ι → ι
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
0fc90..
x0
x3
)
(
0fc90..
x0
x4
)
)
)
)
)
Theorem
5dcde..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
x0
=
37dbe..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
8d6c4..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
x0
=
f482f..
(
37dbe..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
d246f..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
x0
=
37dbe..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
x7
(proof)
Theorem
61aee..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
e3162..
(
f482f..
(
37dbe..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Theorem
e008e..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
x0
=
37dbe..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
eea63..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
37dbe..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
9c862..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
x0
=
37dbe..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
c1142..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
f482f..
(
f482f..
(
37dbe..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
42f04..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
x0
=
37dbe..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x5
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
(proof)
Theorem
3b308..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
∀ x5 .
prim1
x5
x0
⟶
x4
x5
=
f482f..
(
f482f..
(
37dbe..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(proof)
Theorem
c5fe9..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 x8 x9 :
ι → ι
.
37dbe..
x0
x2
x4
x6
x8
=
37dbe..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x8
x10
=
x9
x10
)
(proof)
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Theorem
3967a..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ι
.
∀ x5 x6 x7 x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x1
x9
x10
=
x2
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x3
x9
x10
=
x4
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x5
x9
=
x6
x9
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x7
x9
=
x8
x9
)
⟶
37dbe..
x0
x1
x3
x5
x7
=
37dbe..
x0
x2
x4
x6
x8
(proof)
Definition
04451..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x5
x6
)
x2
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x2
⟶
prim1
(
x6
x7
)
x2
)
⟶
x1
(
37dbe..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
3c27b..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x3
x4
)
x0
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x4
x5
)
x0
)
⟶
04451..
(
37dbe..
x0
x1
x2
x3
x4
)
(proof)
Theorem
e6800..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
04451..
(
37dbe..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x1
x5
x6
)
x0
(proof)
Theorem
4223b..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
04451..
(
37dbe..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Theorem
114ab..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
04451..
(
37dbe..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x3
x5
)
x0
(proof)
Theorem
6599b..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
04451..
(
37dbe..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x4
x5
)
x0
(proof)
Theorem
51def..
:
∀ x0 .
04451..
x0
⟶
x0
=
37dbe..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
a2e89..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ι
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
53862..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι → ι
.
(
∀ x10 .
prim1
x10
x1
⟶
x5
x10
=
x9
x10
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
a2e89..
(
37dbe..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
4314e..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ι
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
b091d..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι → ι
.
(
∀ x10 .
prim1
x10
x1
⟶
x5
x10
=
x9
x10
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
4314e..
(
37dbe..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
b1713..
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
λ x3 :
ι → ι
.
λ x4 :
ι →
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
0fc90..
x0
x3
)
(
d2155..
x0
x4
)
)
)
)
)
Theorem
2847f..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
x0
=
b1713..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
284cf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x5
x0
(
f482f..
(
b1713..
x0
x1
x2
x3
x4
)
4a7ef..
)
⟶
x5
(
f482f..
(
b1713..
x0
x1
x2
x3
x4
)
4a7ef..
)
x0
(proof)
Theorem
dee9e..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
x0
=
b1713..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
x7
(proof)
Theorem
da4cc..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
e3162..
(
f482f..
(
b1713..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Theorem
64660..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
x0
=
b1713..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
d6f9b..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
b1713..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
ba63c..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
x0
=
b1713..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
c41bd..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
f482f..
(
f482f..
(
b1713..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
c42c4..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
x0
=
b1713..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x5
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
x7
(proof)
Theorem
a55dd..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
x6
=
2b2e3..
(
f482f..
(
b1713..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
(proof)
Theorem
309f9..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 :
ι → ι
.
∀ x8 x9 :
ι →
ι → ο
.
b1713..
x0
x2
x4
x6
x8
=
b1713..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x8
x10
x11
=
x9
x10
x11
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Theorem
839ff..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ι
.
∀ x5 x6 :
ι → ι
.
∀ x7 x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x1
x9
x10
=
x2
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x3
x9
x10
=
x4
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x5
x9
=
x6
x9
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x7
x9
x10
)
(
x8
x9
x10
)
)
⟶
b1713..
x0
x1
x3
x5
x7
=
b1713..
x0
x2
x4
x6
x8
(proof)
Definition
d51b5..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x5
x6
)
x2
)
⟶
∀ x6 :
ι →
ι → ο
.
x1
(
b1713..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
e0ddc..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x3
x4
)
x0
)
⟶
∀ x4 :
ι →
ι → ο
.
d51b5..
(
b1713..
x0
x1
x2
x3
x4
)
(proof)
Theorem
2a5bd..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
d51b5..
(
b1713..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x1
x5
x6
)
x0
(proof)
Theorem
b5aaf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
d51b5..
(
b1713..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Theorem
1d099..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
d51b5..
(
b1713..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x3
x5
)
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
1f70a..
:
∀ x0 .
d51b5..
x0
⟶
x0
=
b1713..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
1f4f1..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
c1aec..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
∀ x11 .
prim1
x11
x1
⟶
iff
(
x5
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
1f4f1..
(
b1713..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
c83ef..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
6a5ab..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι →
ι → ο
.
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
∀ x11 .
prim1
x11
x1
⟶
iff
(
x5
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
c83ef..
(
b1713..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
de6e8..
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
λ x3 :
ι → ι
.
λ x4 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
0fc90..
x0
x3
)
(
1216a..
x0
x4
)
)
)
)
)
Theorem
f97c5..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
x0
=
de6e8..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
96cbf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
x0
=
f482f..
(
de6e8..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
10e9c..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
x0
=
de6e8..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
x7
(proof)
Theorem
7d032..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
e3162..
(
f482f..
(
de6e8..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Theorem
9b430..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
x0
=
de6e8..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
a411f..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
de6e8..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
48cf3..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
x0
=
de6e8..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
41435..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
f482f..
(
f482f..
(
de6e8..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
71c44..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
x0
=
de6e8..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x5
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
(proof)
Theorem
cb2b8..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x4
x5
=
decode_p
(
f482f..
(
de6e8..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(proof)
Theorem
28853..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 :
ι → ι
.
∀ x8 x9 :
ι → ο
.
de6e8..
x0
x2
x4
x6
x8
=
de6e8..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x8
x10
=
x9
x10
)
(proof)
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Theorem
c3164..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ι
.
∀ x5 x6 :
ι → ι
.
∀ x7 x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x1
x9
x10
=
x2
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x3
x9
x10
=
x4
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x5
x9
=
x6
x9
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x7
x9
)
(
x8
x9
)
)
⟶
de6e8..
x0
x1
x3
x5
x7
=
de6e8..
x0
x2
x4
x6
x8
(proof)
Definition
c754f..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x5
x6
)
x2
)
⟶
∀ x6 :
ι → ο
.
x1
(
de6e8..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
7d63f..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x3
x4
)
x0
)
⟶
∀ x4 :
ι → ο
.
c754f..
(
de6e8..
x0
x1
x2
x3
x4
)
(proof)
Theorem
33ba0..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
c754f..
(
de6e8..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x1
x5
x6
)
x0
(proof)
Theorem
e7ad6..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
c754f..
(
de6e8..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Theorem
c7ce6..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
c754f..
(
de6e8..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x3
x5
)
x0
(proof)
Theorem
90377..
:
∀ x0 .
c754f..
x0
⟶
x0
=
de6e8..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
0a647..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
7c0bd..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
0a647..
(
de6e8..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
09b8b..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
e4b93..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 :
ι → ο
.
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
09b8b..
(
de6e8..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
previous assets