Search for blocks/addresses/...
Proofgold Address
address
PUdQgs514qLQLiKVTpZQMgCuBhhoArV9uMm
total
0
mg
-
conjpub
-
current assets
940bd..
/
70ebf..
bday:
4899
doc published by
Pr6Pc..
Param
famunion
famunion
:
ι
→
(
ι
→
ι
) →
ι
Param
setsum
setsum
:
ι
→
ι
→
ι
Definition
lam
Sigma
:=
λ x0 .
λ x1 :
ι → ι
.
famunion
x0
(
λ x2 .
prim5
(
x1
x2
)
(
setsum
x2
)
)
Known
famunionI
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Theorem
lamI
lamI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
setsum
x2
x3
∈
lam
x0
x1
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
proj0
proj0
:
ι
→
ι
Param
proj1
proj1
:
ι
→
ι
Known
exandE_i
exandE_i
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
proj0_pair_eq
proj0_pair_eq
:
∀ x0 x1 .
proj0
(
setsum
x0
x1
)
=
x0
Known
proj1_pair_eq
proj1_pair_eq
:
∀ x0 x1 .
proj1
(
setsum
x0
x1
)
=
x1
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
famunionE
famunionE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
∈
x1
x4
)
⟶
x3
)
⟶
x3
Theorem
Sigma_eta_proj0_proj1
Sigma_eta_proj0_proj1
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
and
(
and
(
setsum
(
proj0
x2
)
(
proj1
x2
)
=
x2
)
(
proj0
x2
∈
x0
)
)
(
proj1
x2
∈
x1
(
proj0
x2
)
)
(proof)
Known
and3E
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
proj_Sigma_eta
proj_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
setsum
(
proj0
x2
)
(
proj1
x2
)
=
x2
(proof)
Theorem
proj0_Sigma
proj0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
proj0
x2
∈
x0
(proof)
Theorem
proj1_Sigma
proj1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
proj1
x2
∈
x1
(
proj0
x2
)
(proof)
Theorem
pair_Sigma_E0
pair_Sigma_E0
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
setsum
x2
x3
∈
lam
x0
x1
⟶
x2
∈
x0
(proof)
Theorem
pair_Sigma_E1
pair_Sigma_E1
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
setsum
x2
x3
∈
lam
x0
x1
⟶
x3
∈
x1
x2
(proof)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
lamE
lamE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x1
x4
)
(
x2
=
setsum
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
lamEq
lamEq
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
iff
(
x2
∈
lam
x0
x1
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x1
x4
)
(
x2
=
setsum
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Theorem
Sigma_mon
Sigma_mon
:
∀ x0 x1 .
x0
⊆
x1
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
⊆
x3
x4
)
⟶
lam
x0
x2
⊆
lam
x1
x3
(proof)
Known
Subq_ref
Subq_ref
:
∀ x0 .
x0
⊆
x0
Theorem
Sigma_mon0
Sigma_mon0
:
∀ x0 x1 .
x0
⊆
x1
⟶
∀ x2 :
ι → ι
.
lam
x0
x2
⊆
lam
x1
x2
(proof)
Theorem
Sigma_mon1
Sigma_mon1
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
⊆
x2
x3
)
⟶
lam
x0
x1
⊆
lam
x0
x2
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Known
In_0_1
In_0_1
:
0
∈
1
Known
setsum_0_0
setsum_0_0
:
setsum
0
0
=
0
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
Subq_1_Sing0
Subq_1_Sing0
:
1
⊆
Sing
0
Known
PowerE
PowerE
:
∀ x0 x1 .
x1
∈
prim4
x0
⟶
x1
⊆
x0
Theorem
Sigma_Power_1
Sigma_Power_1
:
∀ x0 .
x0
∈
prim4
1
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim4
1
)
⟶
lam
x0
x1
∈
prim4
1
(proof)
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Theorem
pair_setprod
pair_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
setsum
x2
x3
∈
setprod
x0
x1
(proof)
Theorem
proj0_setprod
proj0_setprod
:
∀ x0 x1 x2 .
x2
∈
setprod
x0
x1
⟶
proj0
x2
∈
x0
(proof)
Theorem
proj1_setprod
proj1_setprod
:
∀ x0 x1 x2 .
x2
∈
setprod
x0
x1
⟶
proj1
x2
∈
x1
(proof)
Theorem
pair_setprod_E0
pair_setprod_E0
:
∀ x0 x1 x2 x3 .
setsum
x2
x3
∈
setprod
x0
x1
⟶
x2
∈
x0
(proof)
Theorem
pair_setprod_E1
pair_setprod_E1
:
∀ x0 x1 x2 x3 .
setsum
x2
x3
∈
setprod
x0
x1
⟶
x3
∈
x1
(proof)
Param
ReplSep
ReplSep
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
Definition
ap
ap
:=
λ x0 x1 .
ReplSep
x0
(
λ x2 .
∀ x3 : ο .
(
∀ x4 .
x2
=
setsum
x1
x4
⟶
x3
)
⟶
x3
)
proj1
Known
ReplSepI
ReplSepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
x1
x3
⟶
x2
x3
∈
ReplSep
x0
x1
x2
Theorem
apI
apI
:
∀ x0 x1 x2 .
setsum
x1
x2
∈
x0
⟶
x2
∈
ap
x0
x1
(proof)
Known
ReplSepE_impred
ReplSepE_impred
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
ReplSep
x0
x1
x2
⟶
∀ x4 : ο .
(
∀ x5 .
x5
∈
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Theorem
apE
apE
:
∀ x0 x1 x2 .
x2
∈
ap
x0
x1
⟶
setsum
x1
x2
∈
x0
(proof)
Theorem
apEq
apEq
:
∀ x0 x1 x2 .
iff
(
x2
∈
ap
x0
x1
)
(
setsum
x1
x2
∈
x0
)
(proof)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Theorem
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Theorem
beta0
beta0
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
nIn
x2
x0
⟶
ap
(
lam
x0
x1
)
x2
=
0
(proof)
Known
proj0E
proj0E
:
∀ x0 x1 .
x1
∈
proj0
x0
⟶
setsum
0
x1
∈
x0
Known
proj0I
proj0I
:
∀ x0 x1 .
setsum
0
x1
∈
x0
⟶
x1
∈
proj0
x0
Theorem
proj0_ap_0
proj0_ap_0
:
∀ x0 .
proj0
x0
=
ap
x0
0
(proof)
Known
proj1E
proj1E
:
∀ x0 x1 .
x1
∈
proj1
x0
⟶
setsum
1
x1
∈
x0
Known
proj1I
proj1I
:
∀ x0 x1 .
setsum
1
x1
∈
x0
⟶
x1
∈
proj1
x0
Theorem
proj1_ap_1
proj1_ap_1
:
∀ x0 .
proj1
x0
=
ap
x0
1
(proof)
Theorem
pair_ap_0
pair_ap_0
:
∀ x0 x1 .
ap
(
setsum
x0
x1
)
0
=
x0
(proof)
Theorem
pair_ap_1
pair_ap_1
:
∀ x0 x1 .
ap
(
setsum
x0
x1
)
1
=
x1
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
pairE
pairE
:
∀ x0 x1 x2 .
x2
∈
setsum
x0
x1
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
=
setsum
0
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
=
setsum
1
x4
)
⟶
x3
)
⟶
x3
)
Known
pair_inj
pair_inj
:
∀ x0 x1 x2 x3 .
setsum
x0
x1
=
setsum
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
In_0_2
In_0_2
:
0
∈
2
Known
In_1_2
In_1_2
:
1
∈
2
Theorem
pair_ap_n2
pair_ap_n2
:
∀ x0 x1 x2 .
nIn
x2
2
⟶
ap
(
setsum
x0
x1
)
x2
=
0
(proof)
Theorem
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
(proof)
Theorem
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
(proof)
Definition
pair_p
pair_p
:=
λ x0 .
setsum
(
ap
x0
0
)
(
ap
x0
1
)
=
x0
Theorem
pair_p_I
pair_p_I
:
∀ x0 x1 .
pair_p
(
setsum
x0
x1
)
(proof)
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
pairI0
pairI0
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
setsum
0
x2
∈
setsum
x0
x1
Known
pairI1
pairI1
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
setsum
1
x2
∈
setsum
x0
x1
Known
Subq_2_UPair01
Subq_2_UPair01
:
2
⊆
UPair
0
1
Theorem
pair_p_I2
pair_p_I2
:
∀ x0 .
(
∀ x1 .
x1
∈
x0
⟶
and
(
pair_p
x1
)
(
ap
x1
0
∈
2
)
)
⟶
pair_p
x0
(proof)
Theorem
pair_p_In_ap
pair_p_In_ap
:
∀ x0 x1 .
pair_p
x0
⟶
x0
∈
x1
⟶
ap
x0
1
∈
ap
x1
(
ap
x0
0
)
(proof)
Definition
tuple_p
tuple_p
:=
λ x0 x1 .
∀ x2 .
x2
∈
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
x2
=
setsum
x4
x6
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
pred_ext_2
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Theorem
pair_p_tuple2
pair_p_tuple2
:
pair_p
=
tuple_p
2
(proof)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Theorem
tuple_p_2_tuple
tuple_p_2_tuple
:
∀ x0 x1 .
tuple_p
2
(
lam
2
(
λ x2 .
If_i
(
x2
=
0
)
x0
x1
)
)
(proof)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
neq_1_0
neq_1_0
:
1
=
0
⟶
∀ x0 : ο .
x0
Theorem
tuple_pair
tuple_pair
:
∀ x0 x1 .
setsum
x0
x1
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
Pi
Pi
:=
λ x0 .
λ x1 :
ι → ι
.
{x2 ∈
prim4
(
lam
x0
(
λ x2 .
prim3
(
x1
x2
)
)
)
|
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
}
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
UnionI
UnionI
:
∀ x0 x1 x2 .
x1
∈
x2
⟶
x2
∈
x0
⟶
x1
∈
prim3
x0
Theorem
PiI
PiI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
x3
∈
x2
⟶
and
(
pair_p
x3
)
(
ap
x3
0
∈
x0
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
)
⟶
x2
∈
Pi
x0
x1
(proof)
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Theorem
PiE
PiE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
and
(
∀ x3 .
x3
∈
x2
⟶
and
(
pair_p
x3
)
(
ap
x3
0
∈
x0
)
)
(
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
)
(proof)
Theorem
PiEq
PiEq
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
iff
(
x2
∈
Pi
x0
x1
)
(
and
(
∀ x3 .
x3
∈
x2
⟶
and
(
pair_p
x3
)
(
ap
x3
0
∈
x0
)
)
(
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
)
)
(proof)
Theorem
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
(proof)
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Theorem
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
(proof)
Theorem
Pi_ext_Subq
Pi_ext_Subq
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
∀ x3 .
x3
∈
Pi
x0
x1
⟶
(
∀ x4 .
x4
∈
x0
⟶
ap
x2
x4
⊆
ap
x3
x4
)
⟶
x2
⊆
x3
(proof)
Theorem
Pi_ext
Pi_ext
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
∀ x3 .
x3
∈
Pi
x0
x1
⟶
(
∀ x4 .
x4
∈
x0
⟶
ap
x2
x4
=
ap
x3
x4
)
⟶
x2
=
x3
(proof)
Theorem
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
(proof)
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Theorem
pair_tuple_fun
pair_tuple_fun
:
setsum
=
λ x1 x2 .
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x1
x2
)
(proof)
Theorem
tuple_2_Sigma
tuple_2_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
x2
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
lam
x0
x1
(proof)
Theorem
lamE2
lamE2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x1
x4
)
(
x2
=
lam
2
(
λ x8 .
If_i
(
x8
=
0
)
x4
x6
)
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
(proof)
Theorem
tuple_2_inj
tuple_2_inj
:
∀ x0 x1 x2 x3 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x0
x1
)
=
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x2
x3
)
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Theorem
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
(proof)
Theorem
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
(proof)
Definition
Sep2
Sep2
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ο
.
{x3 ∈
lam
x0
x1
|
x2
(
ap
x3
0
)
(
ap
x3
1
)
}
Theorem
Sep2I
Sep2I
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x1
x3
⟶
x2
x3
x4
⟶
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
∈
Sep2
x0
x1
x2
(proof)
Theorem
Sep2E
Sep2E
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x3
∈
Sep2
x0
x1
x2
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x1
x5
)
(
and
(
x3
=
lam
2
(
λ x9 .
If_i
(
x9
=
0
)
x5
x7
)
)
(
x2
x5
x7
)
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
(proof)
Theorem
Sep2E'
Sep2E
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
∈
Sep2
x0
x1
x2
⟶
and
(
and
(
x3
∈
x0
)
(
x4
∈
x1
x3
)
)
(
x2
x3
x4
)
(proof)
Theorem
Sep2E'1
Sep2E1
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
∈
Sep2
x0
x1
x2
⟶
x3
∈
x0
(proof)
Theorem
Sep2E'2
Sep2E2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
∈
Sep2
x0
x1
x2
⟶
x4
∈
x1
x3
(proof)
Theorem
Sep2E'3
Sep2E3
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x3
x4
)
∈
Sep2
x0
x1
x2
⟶
x2
x3
x4
(proof)
Definition
set_of_pairs
set_of_pairs
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
∀ x2 : ο .
(
∀ x3 .
(
∀ x4 : ο .
(
∀ x5 .
x1
=
lam
2
(
λ x7 .
If_i
(
x7
=
0
)
x3
x5
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
Theorem
set_of_pairs_ext
set_of_pairs_ext
:
∀ x0 x1 .
set_of_pairs
x0
⟶
set_of_pairs
x1
⟶
(
∀ x2 x3 .
iff
(
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
x0
)
(
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
x1
)
)
⟶
x0
=
x1
(proof)
Theorem
Sep2_set_of_pairs
Sep2_set_of_pairs
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
set_of_pairs
(
Sep2
x0
x1
x2
)
(proof)
Theorem
Sep2_ext
Sep2_ext
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x1
x4
⟶
iff
(
x2
x4
x5
)
(
x3
x4
x5
)
)
⟶
Sep2
x0
x1
x2
=
Sep2
x0
x1
x3
(proof)
Theorem
lam_ext_sub
lam_ext_sub
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
⊆
lam
x0
x2
(proof)
Theorem
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
(proof)
Theorem
lam_eta
lam_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
lam
x0
(
ap
(
lam
x0
x1
)
)
=
lam
x0
x1
(proof)
Theorem
tuple_2_eta
tuple_2_eta
:
∀ x0 x1 .
lam
2
(
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
)
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
(proof)
Definition
lam2
lam2
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ι
.
lam
x0
(
λ x3 .
lam
(
x1
x3
)
(
x2
x3
)
)
Theorem
beta2
beta2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x1
x3
⟶
ap
(
ap
(
lam2
x0
x1
x2
)
x3
)
x4
=
x2
x3
x4
(proof)
Theorem
lam2_ext
lam2_ext
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x1
x4
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
lam2
x0
x1
x2
=
lam2
x0
x1
x3
(proof)
Definition
lam
Sigma
:=
lam
Definition
ap
ap
:=
ap
Definition
encode_b
encode_b
:=
λ x0 .
lam2
x0
(
λ x1 .
x0
)
Definition
decode_b
decode_b
:=
λ x0 x1 .
ap
(
ap
x0
x1
)
Definition
decode_p
decode_p
:=
λ x0 x1 .
x1
∈
x0
Definition
encode_r
encode_r
:=
λ x0 .
Sep2
x0
(
λ x1 .
x0
)
Definition
decode_r
decode_r
:=
λ x0 x1 x2 .
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x1
x2
)
∈
x0
Definition
encode_c
encode_c
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
{x2 ∈
prim4
x0
|
x1
(
λ x3 .
x3
∈
x2
)
}
Definition
decode_c
decode_c
:=
λ x0 .
λ x1 :
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
and
(
∀ x4 .
iff
(
x1
x4
)
(
x4
∈
x3
)
)
(
x3
∈
x0
)
⟶
x2
)
⟶
x2
Theorem
decode_encode_b
decode_encode_b
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
decode_b
(
encode_b
x0
x1
)
x2
x3
=
x1
x2
x3
(proof)
Theorem
encode_b_ext
encode_b_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
encode_b
x0
x1
=
encode_b
x0
x2
(proof)
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
decode_encode_p
decode_encode_p
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
decode_p
(
Sep
x0
x1
)
x2
=
x1
x2
(proof)
Theorem
encode_p_ext
encode_p_ext
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
Sep
x0
x1
=
Sep
x0
x2
(proof)
Theorem
decode_encode_r
decode_encode_r
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
decode_r
(
encode_r
x0
x1
)
x2
x3
=
x1
x2
x3
(proof)
Theorem
encode_r_ext
encode_r_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
encode_r
x0
x1
=
encode_r
x0
x2
(proof)
Known
Sep_In_Power
Sep_In_Power
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
∈
prim4
x0
Theorem
decode_encode_c
decode_encode_c
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
x3
∈
x0
)
⟶
decode_c
(
encode_c
x0
x1
)
x2
=
x1
x2
(proof)
Theorem
encode_c_ext
encode_c_ext
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
x4
∈
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
encode_c
x0
x1
=
encode_c
x0
x2
(proof)
previous assets