Search for blocks/addresses/...

Proofgold Address

address
PUdQgs514qLQLiKVTpZQMgCuBhhoArV9uMm
total
0
mg
-
conjpub
-
current assets
940bd../70ebf.. bday: 4899 doc published by Pr6Pc..
Param famunionfamunion : ι(ιι) → ι
Param setsumsetsum : ιιι
Definition lamSigma := λ x0 . λ x1 : ι → ι . famunion x0 (λ x2 . prim5 (x1 x2) (setsum x2))
Known famunionIfamunionI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2x0x3x1 x2x3famunion x0 x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Theorem lamIlamI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0∀ x3 . x3x1 x2setsum x2 x3lam x0 x1 (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param proj0proj0 : ιι
Param proj1proj1 : ιι
Known exandE_iexandE_i : ∀ x0 x1 : ι → ο . (∀ x2 : ο . (∀ x3 . and (x0 x3) (x1 x3)x2)x2)∀ x2 : ο . (∀ x3 . x0 x3x1 x3x2)x2
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known proj0_pair_eqproj0_pair_eq : ∀ x0 x1 . proj0 (setsum x0 x1) = x0
Known proj1_pair_eqproj1_pair_eq : ∀ x0 x1 . proj1 (setsum x0 x1) = x1
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known famunionEfamunionE : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2famunion x0 x1∀ x3 : ο . (∀ x4 . and (x4x0) (x2x1 x4)x3)x3
Theorem Sigma_eta_proj0_proj1Sigma_eta_proj0_proj1 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1and (and (setsum (proj0 x2) (proj1 x2) = x2) (proj0 x2x0)) (proj1 x2x1 (proj0 x2)) (proof)
Known and3Eand3E : ∀ x0 x1 x2 : ο . and (and x0 x1) x2∀ x3 : ο . (x0x1x2x3)x3
Theorem proj_Sigma_etaproj_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1setsum (proj0 x2) (proj1 x2) = x2 (proof)
Theorem proj0_Sigmaproj0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1proj0 x2x0 (proof)
Theorem proj1_Sigmaproj1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1proj1 x2x1 (proj0 x2) (proof)
Theorem pair_Sigma_E0pair_Sigma_E0 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . setsum x2 x3lam x0 x1x2x0 (proof)
Theorem pair_Sigma_E1pair_Sigma_E1 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . setsum x2 x3lam x0 x1x3x1 x2 (proof)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem lamElamE : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1∀ x3 : ο . (∀ x4 . and (x4x0) (∀ x5 : ο . (∀ x6 . and (x6x1 x4) (x2 = setsum x4 x6)x5)x5)x3)x3 (proof)
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Theorem lamEqlamEq : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . iff (x2lam x0 x1) (∀ x3 : ο . (∀ x4 . and (x4x0) (∀ x5 : ο . (∀ x6 . and (x6x1 x4) (x2 = setsum x4 x6)x5)x5)x3)x3) (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Theorem Sigma_monSigma_mon : ∀ x0 x1 . x0x1∀ x2 x3 : ι → ι . (∀ x4 . x4x0x2 x4x3 x4)lam x0 x2lam x1 x3 (proof)
Known Subq_refSubq_ref : ∀ x0 . x0x0
Theorem Sigma_mon0Sigma_mon0 : ∀ x0 x1 . x0x1∀ x2 : ι → ι . lam x0 x2lam x1 x2 (proof)
Theorem Sigma_mon1Sigma_mon1 : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3x2 x3)lam x0 x1lam x0 x2 (proof)
Param ordsuccordsucc : ιι
Known PowerIPowerI : ∀ x0 x1 . x1x0x1prim4 x0
Known In_0_1In_0_1 : 01
Known setsum_0_0setsum_0_0 : setsum 0 0 = 0
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known Subq_1_Sing0Subq_1_Sing0 : 1Sing 0
Known PowerEPowerE : ∀ x0 x1 . x1prim4 x0x1x0
Theorem Sigma_Power_1Sigma_Power_1 : ∀ x0 . x0prim4 1∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2prim4 1)lam x0 x1prim4 1 (proof)
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Theorem pair_setprodpair_setprod : ∀ x0 x1 x2 . x2x0∀ x3 . x3x1setsum x2 x3setprod x0 x1 (proof)
Theorem proj0_setprodproj0_setprod : ∀ x0 x1 x2 . x2setprod x0 x1proj0 x2x0 (proof)
Theorem proj1_setprodproj1_setprod : ∀ x0 x1 x2 . x2setprod x0 x1proj1 x2x1 (proof)
Theorem pair_setprod_E0pair_setprod_E0 : ∀ x0 x1 x2 x3 . setsum x2 x3setprod x0 x1x2x0 (proof)
Theorem pair_setprod_E1pair_setprod_E1 : ∀ x0 x1 x2 x3 . setsum x2 x3setprod x0 x1x3x1 (proof)
Param ReplSepReplSep : ι(ιο) → (ιι) → ι
Definition apap := λ x0 x1 . ReplSep x0 (λ x2 . ∀ x3 : ο . (∀ x4 . x2 = setsum x1 x4x3)x3) proj1
Known ReplSepIReplSepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3x0x1 x3x2 x3ReplSep x0 x1 x2
Theorem apIapI : ∀ x0 x1 x2 . setsum x1 x2x0x2ap x0 x1 (proof)
Known ReplSepE_impredReplSepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 : ι → ι . ∀ x3 . x3ReplSep x0 x1 x2∀ x4 : ο . (∀ x5 . x5x0x1 x5x3 = x2 x5x4)x4
Theorem apEapE : ∀ x0 x1 x2 . x2ap x0 x1setsum x1 x2x0 (proof)
Theorem apEqapEq : ∀ x0 x1 x2 . iff (x2ap x0 x1) (setsum x1 x2x0) (proof)
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Theorem betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known Empty_eqEmpty_eq : ∀ x0 . (∀ x1 . nIn x1 x0)x0 = 0
Theorem beta0beta0 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . nIn x2 x0ap (lam x0 x1) x2 = 0 (proof)
Known proj0Eproj0E : ∀ x0 x1 . x1proj0 x0setsum 0 x1x0
Known proj0Iproj0I : ∀ x0 x1 . setsum 0 x1x0x1proj0 x0
Theorem proj0_ap_0proj0_ap_0 : ∀ x0 . proj0 x0 = ap x0 0 (proof)
Known proj1Eproj1E : ∀ x0 x1 . x1proj1 x0setsum 1 x1x0
Known proj1Iproj1I : ∀ x0 x1 . setsum 1 x1x0x1proj1 x0
Theorem proj1_ap_1proj1_ap_1 : ∀ x0 . proj1 x0 = ap x0 1 (proof)
Theorem pair_ap_0pair_ap_0 : ∀ x0 x1 . ap (setsum x0 x1) 0 = x0 (proof)
Theorem pair_ap_1pair_ap_1 : ∀ x0 x1 . ap (setsum x0 x1) 1 = x1 (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known pairEpairE : ∀ x0 x1 x2 . x2setsum x0 x1or (∀ x3 : ο . (∀ x4 . and (x4x0) (x2 = setsum 0 x4)x3)x3) (∀ x3 : ο . (∀ x4 . and (x4x1) (x2 = setsum 1 x4)x3)x3)
Known pair_injpair_inj : ∀ x0 x1 x2 x3 . setsum x0 x1 = setsum x2 x3and (x0 = x2) (x1 = x3)
Known In_0_2In_0_2 : 02
Known In_1_2In_1_2 : 12
Theorem pair_ap_n2pair_ap_n2 : ∀ x0 x1 x2 . nIn x2 2ap (setsum x0 x1) x2 = 0 (proof)
Theorem ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0 (proof)
Theorem ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0) (proof)
Definition pair_ppair_p := λ x0 . setsum (ap x0 0) (ap x0 1) = x0
Theorem pair_p_Ipair_p_I : ∀ x0 x1 . pair_p (setsum x0 x1) (proof)
Param UPairUPair : ιιι
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Known pairI0pairI0 : ∀ x0 x1 x2 . x2x0setsum 0 x2setsum x0 x1
Known pairI1pairI1 : ∀ x0 x1 x2 . x2x1setsum 1 x2setsum x0 x1
Known Subq_2_UPair01Subq_2_UPair01 : 2UPair 0 1
Theorem pair_p_I2pair_p_I2 : ∀ x0 . (∀ x1 . x1x0and (pair_p x1) (ap x1 02))pair_p x0 (proof)
Theorem pair_p_In_appair_p_In_ap : ∀ x0 x1 . pair_p x0x0x1ap x0 1ap x1 (ap x0 0) (proof)
Definition tuple_ptuple_p := λ x0 x1 . ∀ x2 . x2x1∀ x3 : ο . (∀ x4 . and (x4x0) (∀ x5 : ο . (∀ x6 . x2 = setsum x4 x6x5)x5)x3)x3
Known pred_ext_2pred_ext_2 : ∀ x0 x1 : ι → ο . (∀ x2 . x0 x2x1 x2)(∀ x2 . x1 x2x0 x2)x0 = x1
Theorem pair_p_tuple2pair_p_tuple2 : pair_p = tuple_p 2 (proof)
Param If_iIf_i : οιιι
Theorem tuple_p_2_tupletuple_p_2_tuple : ∀ x0 x1 . tuple_p 2 (lam 2 (λ x2 . If_i (x2 = 0) x0 x1)) (proof)
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0
Theorem tuple_pairtuple_pair : ∀ x0 x1 . setsum x0 x1 = lam 2 (λ x3 . If_i (x3 = 0) x0 x1) (proof)
Param SepSep : ι(ιο) → ι
Definition PiPi := λ x0 . λ x1 : ι → ι . {x2 ∈ prim4 (lam x0 (λ x2 . prim3 (x1 x2)))|∀ x3 . x3x0ap x2 x3x1 x3}
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known UnionIUnionI : ∀ x0 x1 x2 . x1x2x2x0x1prim3 x0
Theorem PiIPiI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . (∀ x3 . x3x2and (pair_p x3) (ap x3 0x0))(∀ x3 . x3x0ap x2 x3x1 x3)x2Pi x0 x1 (proof)
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Theorem PiEPiE : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1and (∀ x3 . x3x2and (pair_p x3) (ap x3 0x0)) (∀ x3 . x3x0ap x2 x3x1 x3) (proof)
Theorem PiEqPiEq : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . iff (x2Pi x0 x1) (and (∀ x3 . x3x2and (pair_p x3) (ap x3 0x0)) (∀ x3 . x3x0ap x2 x3x1 x3)) (proof)
Theorem lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1 (proof)
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Theorem ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3 (proof)
Theorem Pi_ext_SubqPi_ext_Subq : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1∀ x3 . x3Pi x0 x1(∀ x4 . x4x0ap x2 x4ap x3 x4)x2x3 (proof)
Theorem Pi_extPi_ext : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1∀ x3 . x3Pi x0 x1(∀ x4 . x4x0ap x2 x4 = ap x3 x4)x2 = x3 (proof)
Theorem Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2 (proof)
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Theorem pair_tuple_funpair_tuple_fun : setsum = λ x1 x2 . lam 2 (λ x3 . If_i (x3 = 0) x1 x2) (proof)
Theorem tuple_2_Sigmatuple_2_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0∀ x3 . x3x1 x2lam 2 (λ x4 . If_i (x4 = 0) x2 x3)lam x0 x1 (proof)
Theorem lamE2lamE2 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1∀ x3 : ο . (∀ x4 . and (x4x0) (∀ x5 : ο . (∀ x6 . and (x6x1 x4) (x2 = lam 2 (λ x8 . If_i (x8 = 0) x4 x6))x5)x5)x3)x3 (proof)
Theorem tuple_2_injtuple_2_inj : ∀ x0 x1 x2 x3 . lam 2 (λ x5 . If_i (x5 = 0) x0 x1) = lam 2 (λ x5 . If_i (x5 = 0) x2 x3)and (x0 = x2) (x1 = x3) (proof)
Theorem tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0 (proof)
Theorem tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1 (proof)
Definition Sep2Sep2 := λ x0 . λ x1 : ι → ι . λ x2 : ι → ι → ο . {x3 ∈ lam x0 x1|x2 (ap x3 0) (ap x3 1)}
Theorem Sep2ISep2I : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 . x3x0∀ x4 . x4x1 x3x2 x3 x4lam 2 (λ x5 . If_i (x5 = 0) x3 x4)Sep2 x0 x1 x2 (proof)
Theorem Sep2ESep2E : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 . x3Sep2 x0 x1 x2∀ x4 : ο . (∀ x5 . and (x5x0) (∀ x6 : ο . (∀ x7 . and (x7x1 x5) (and (x3 = lam 2 (λ x9 . If_i (x9 = 0) x5 x7)) (x2 x5 x7))x6)x6)x4)x4 (proof)
Theorem Sep2E'Sep2E : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 . lam 2 (λ x5 . If_i (x5 = 0) x3 x4)Sep2 x0 x1 x2and (and (x3x0) (x4x1 x3)) (x2 x3 x4) (proof)
Theorem Sep2E'1Sep2E1 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 . lam 2 (λ x5 . If_i (x5 = 0) x3 x4)Sep2 x0 x1 x2x3x0 (proof)
Theorem Sep2E'2Sep2E2 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 . lam 2 (λ x5 . If_i (x5 = 0) x3 x4)Sep2 x0 x1 x2x4x1 x3 (proof)
Theorem Sep2E'3Sep2E3 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 . lam 2 (λ x5 . If_i (x5 = 0) x3 x4)Sep2 x0 x1 x2x2 x3 x4 (proof)
Definition set_of_pairsset_of_pairs := λ x0 . ∀ x1 . x1x0∀ x2 : ο . (∀ x3 . (∀ x4 : ο . (∀ x5 . x1 = lam 2 (λ x7 . If_i (x7 = 0) x3 x5)x4)x4)x2)x2
Theorem set_of_pairs_extset_of_pairs_ext : ∀ x0 x1 . set_of_pairs x0set_of_pairs x1(∀ x2 x3 . iff (lam 2 (λ x4 . If_i (x4 = 0) x2 x3)x0) (lam 2 (λ x4 . If_i (x4 = 0) x2 x3)x1))x0 = x1 (proof)
Theorem Sep2_set_of_pairsSep2_set_of_pairs : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . set_of_pairs (Sep2 x0 x1 x2) (proof)
Theorem Sep2_extSep2_ext : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 : ι → ι → ο . (∀ x4 . x4x0∀ x5 . x5x1 x4iff (x2 x4 x5) (x3 x4 x5))Sep2 x0 x1 x2 = Sep2 x0 x1 x3 (proof)
Theorem lam_ext_sublam_ext_sub : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1lam x0 x2 (proof)
Theorem encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2 (proof)
Theorem lam_etalam_eta : ∀ x0 . ∀ x1 : ι → ι . lam x0 (ap (lam x0 x1)) = lam x0 x1 (proof)
Theorem tuple_2_etatuple_2_eta : ∀ x0 x1 . lam 2 (ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1))) = lam 2 (λ x3 . If_i (x3 = 0) x0 x1) (proof)
Definition lam2lam2 := λ x0 . λ x1 : ι → ι . λ x2 : ι → ι → ι . lam x0 (λ x3 . lam (x1 x3) (x2 x3))
Theorem beta2beta2 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ι . ∀ x3 . x3x0∀ x4 . x4x1 x3ap (ap (lam2 x0 x1 x2) x3) x4 = x2 x3 x4 (proof)
Theorem lam2_extlam2_ext : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 : ι → ι → ι . (∀ x4 . x4x0∀ x5 . x5x1 x4x2 x4 x5 = x3 x4 x5)lam2 x0 x1 x2 = lam2 x0 x1 x3 (proof)
Definition lamSigma := lam
Definition apap := ap
Definition encode_bencode_b := λ x0 . lam2 x0 (λ x1 . x0)
Definition decode_bdecode_b := λ x0 x1 . ap (ap x0 x1)
Definition decode_pdecode_p := λ x0 x1 . x1x0
Definition encode_rencode_r := λ x0 . Sep2 x0 (λ x1 . x0)
Definition decode_rdecode_r := λ x0 x1 x2 . lam 2 (λ x3 . If_i (x3 = 0) x1 x2)x0
Definition encode_cencode_c := λ x0 . λ x1 : (ι → ο) → ο . {x2 ∈ prim4 x0|x1 (λ x3 . x3x2)}
Definition decode_cdecode_c := λ x0 . λ x1 : ι → ο . ∀ x2 : ο . (∀ x3 . and (∀ x4 . iff (x1 x4) (x4x3)) (x3x0)x2)x2
Theorem decode_encode_bdecode_encode_b : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . x2x0∀ x3 . x3x0decode_b (encode_b x0 x1) x2 x3 = x1 x2 x3 (proof)
Theorem encode_b_extencode_b_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . x3x0∀ x4 . x4x0x1 x3 x4 = x2 x3 x4)encode_b x0 x1 = encode_b x0 x2 (proof)
Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1
Theorem decode_encode_pdecode_encode_p : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0decode_p (Sep x0 x1) x2 = x1 x2 (proof)
Theorem encode_p_extencode_p_ext : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . x3x0iff (x1 x3) (x2 x3))Sep x0 x1 = Sep x0 x2 (proof)
Theorem decode_encode_rdecode_encode_r : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . x2x0∀ x3 . x3x0decode_r (encode_r x0 x1) x2 x3 = x1 x2 x3 (proof)
Theorem encode_r_extencode_r_ext : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . x3x0∀ x4 . x4x0iff (x1 x3 x4) (x2 x3 x4))encode_r x0 x1 = encode_r x0 x2 (proof)
Known Sep_In_PowerSep_In_Power : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1prim4 x0
Theorem decode_encode_cdecode_encode_c : ∀ x0 . ∀ x1 : (ι → ο) → ο . ∀ x2 : ι → ο . (∀ x3 . x2 x3x3x0)decode_c (encode_c x0 x1) x2 = x1 x2 (proof)
Theorem encode_c_extencode_c_ext : ∀ x0 . ∀ x1 x2 : (ι → ο) → ο . (∀ x3 : ι → ο . (∀ x4 . x3 x4x4x0)iff (x1 x3) (x2 x3))encode_c x0 x1 = encode_c x0 x2 (proof)

previous assets