Search for blocks/addresses/...

Proofgold Address

address
PUeBySpwCBCmx9dKzrZMYq3URm3kinqpqTi
total
0
mg
-
conjpub
-
current assets
5edf1../62df1.. bday: 48179 doc published by PrGM6..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 2f869.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)x0 x3 x4x5)x5
Definition 5a3b5.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5not (x0 x3 x5)not (x0 x4 x5)x6)x6
Definition 00e19.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (5a3b5.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6not (x0 x2 x6)not (x0 x3 x6)not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition 180f5.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)x0 x2 x4x0 x3 x4x5)x5
Definition 45422.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (180f5.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5x0 x3 x5not (x0 x4 x5)x6)x6
Definition 85e71.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (45422.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6not (x0 x2 x6)not (x0 x3 x6)x0 x4 x6x0 x5 x6x7)x7
Definition 843b8.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (85e71.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param atleastpatleastp : ιιο
Definition cdfa5.. := λ x0 x1 . λ x2 : ι → ι → ο . ∀ x3 . x3x1atleastp x0 x3not (∀ x4 . x4x3∀ x5 . x5x3(x4 = x5∀ x6 : ο . x6)x2 x4 x5)
Param u4 : ι
Definition 86706.. := cdfa5.. u4
Definition 35fb6.. := λ x0 . λ x1 : ι → ι → ο . 86706.. x0 (λ x2 x3 . not (x1 x2 x3))
Param SetAdjoinSetAdjoin : ιιι
Param UPairUPair : ιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known 7204a.. : ∀ x0 x1 x2 x3 . (x0 = x1∀ x4 : ο . x4)(x0 = x2∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(x0 = x3∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)equip u4 (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3)
Known 58c12.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 x3 x4 . x0 x1 x2x0 x1 x3x0 x1 x4x0 x2 x3x0 x2 x4x0 x3 x4(∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0 x5 x6x0 x6 x5)∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4(x5 = x6∀ x7 : ο . x7)x0 x5 x6
Known c88f0.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0
Theorem 0588f.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)00e19.. x0 x2 x3 x4 x5 x6 x7843b8.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(not (x0 x2 x11)not (x0 x2 x12)x0 x3 x12not (x0 x3 x11)False)(x0 x6 x8not (x0 x3 x8)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x4 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)(x0 x2 x12not (x0 x2 x11)False)(x0 x2 x11not (x0 x2 x9)False)(x0 x2 x10not (x0 x2 x9)False)False
...

Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known FalseEFalseE : False∀ x0 : ο . x0
Known 420f0.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0843b8.. x1 x2 x3 x4 x5 x6 x7 x8843b8.. x1 x2 x3 x4 x6 x5 x7 x8
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem ef7d6.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)00e19.. x0 x2 x3 x4 x5 x6 x7843b8.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x2 x10not (x0 x2 x9)False)(x0 x2 x12not (x0 x2 x9)False)(x0 x2 x11not (x0 x2 x12)False)(x0 x6 x8not (x0 x3 x8)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x4 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Known e8292.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0843b8.. x1 x2 x3 x4 x5 x6 x7 x8843b8.. x1 x2 x6 x5 x4 x3 x8 x7
Theorem 394f8.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)00e19.. x0 x2 x3 x4 x5 x6 x7843b8.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x2 x11not (x0 x2 x12)False)(x0 x2 x10not (x0 x2 x9)False)(x0 x6 x8not (x0 x3 x8)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x4 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Theorem 631b4.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0843b8.. x1 x2 x3 x4 x5 x6 x7 x8843b8.. x1 x2 x5 x6 x4 x3 x8 x7
...

Theorem e45a4.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)00e19.. x0 x2 x3 x4 x5 x6 x7843b8.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x2 x10not (x0 x2 x9)False)(x0 x6 x8not (x0 x3 x8)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x4 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Known 75481.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0843b8.. x1 x2 x3 x4 x5 x6 x7 x8843b8.. x1 x2 x5 x6 x3 x4 x8 x7
Theorem f4e2e.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0843b8.. x1 x2 x3 x4 x5 x6 x7 x8843b8.. x1 x2 x4 x3 x6 x5 x7 x8
...

Theorem b2869.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)00e19.. x0 x2 x3 x4 x5 x6 x7843b8.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x6 x8not (x0 x3 x8)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x4 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Known 8f85a.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι → ι → ι → ι → ι → ι → ο . (∀ x2 x3 . x3x2∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2∀ x7 . x7x2∀ x8 . x8x2∀ x9 . x9x2∀ x10 . x10x2∀ x11 . x11x2∀ x12 . x12x2∀ x13 . x13x2∀ x14 . x14x2∀ x15 . x15x2(∀ x16 . x16x2∀ x17 . x17x2x0 x16 x17x0 x17 x16)(x3 = x9∀ x16 : ο . x16)(x4 = x9∀ x16 : ο . x16)(x5 = x9∀ x16 : ο . x16)(x6 = x9∀ x16 : ο . x16)(x7 = x9∀ x16 : ο . x16)(x8 = x9∀ x16 : ο . x16)(x3 = x10∀ x16 : ο . x16)(x4 = x10∀ x16 : ο . x16)(x5 = x10∀ x16 : ο . x16)(x6 = x10∀ x16 : ο . x16)(x7 = x10∀ x16 : ο . x16)(x8 = x10∀ x16 : ο . x16)(x3 = x11∀ x16 : ο . x16)(x4 = x11∀ x16 : ο . x16)(x5 = x11∀ x16 : ο . x16)(x6 = x11∀ x16 : ο . x16)(x7 = x11∀ x16 : ο . x16)(x8 = x11∀ x16 : ο . x16)(x3 = x12∀ x16 : ο . x16)(x4 = x12∀ x16 : ο . x16)(x5 = x12∀ x16 : ο . x16)(x6 = x12∀ x16 : ο . x16)(x7 = x12∀ x16 : ο . x16)(x8 = x12∀ x16 : ο . x16)(x3 = x13∀ x16 : ο . x16)(x4 = x13∀ x16 : ο . x16)(x5 = x13∀ x16 : ο . x16)(x6 = x13∀ x16 : ο . x16)(x7 = x13∀ x16 : ο . x16)(x8 = x13∀ x16 : ο . x16)(x3 = x14∀ x16 : ο . x16)(x4 = x14∀ x16 : ο . x16)(x5 = x14∀ x16 : ο . x16)(x6 = x14∀ x16 : ο . x16)(x7 = x14∀ x16 : ο . x16)(x8 = x14∀ x16 : ο . x16)(x3 = x15∀ x16 : ο . x16)(x4 = x15∀ x16 : ο . x16)(x5 = x15∀ x16 : ο . x16)(x6 = x15∀ x16 : ο . x16)(x7 = x15∀ x16 : ο . x16)(x8 = x15∀ x16 : ο . x16)00e19.. x0 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12 x13 x14 x1586706.. x2 x035fb6.. x2 x0(x0 x7 x9not (x0 x4 x9)False)(x0 x7 x9not (x0 x3 x9)False)(x0 x6 x9not (x0 x5 x9)False)(x0 x6 x9not (x0 x4 x9)False)(x0 x6 x9not (x0 x3 x9)False)(x0 x5 x9not (x0 x4 x9)False)False)∀ x2 x3 . x3x2∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2∀ x7 . x7x2∀ x8 . x8x2∀ x9 . x9x2∀ x10 . x10x2∀ x11 . x11x2∀ x12 . x12x2∀ x13 . x13x2∀ x14 . x14x2∀ x15 . x15x2(∀ x16 . x16x2∀ x17 . x17x2x0 x16 x17x0 x17 x16)(x3 = x9∀ x16 : ο . x16)(x4 = x9∀ x16 : ο . x16)(x5 = x9∀ x16 : ο . x16)(x6 = x9∀ x16 : ο . x16)(x7 = x9∀ x16 : ο . x16)(x8 = x9∀ x16 : ο . x16)(x3 = x10∀ x16 : ο . x16)(x4 = x10∀ x16 : ο . x16)(x5 = x10∀ x16 : ο . x16)(x6 = x10∀ x16 : ο . x16)(x7 = x10∀ x16 : ο . x16)(x8 = x10∀ x16 : ο . x16)(x3 = x11∀ x16 : ο . x16)(x4 = x11∀ x16 : ο . x16)(x5 = x11∀ x16 : ο . x16)(x6 = x11∀ x16 : ο . x16)(x7 = x11∀ x16 : ο . x16)(x8 = x11∀ x16 : ο . x16)(x3 = x12∀ x16 : ο . x16)(x4 = x12∀ x16 : ο . x16)(x5 = x12∀ x16 : ο . x16)(x6 = x12∀ x16 : ο . x16)(x7 = x12∀ x16 : ο . x16)(x8 = x12∀ x16 : ο . x16)(x3 = x13∀ x16 : ο . x16)(x4 = x13∀ x16 : ο . x16)(x5 = x13∀ x16 : ο . x16)(x6 = x13∀ x16 : ο . x16)(x7 = x13∀ x16 : ο . x16)(x8 = x13∀ x16 : ο . x16)(x3 = x14∀ x16 : ο . x16)(x4 = x14∀ x16 : ο . x16)(x5 = x14∀ x16 : ο . x16)(x6 = x14∀ x16 : ο . x16)(x7 = x14∀ x16 : ο . x16)(x8 = x14∀ x16 : ο . x16)(x3 = x15∀ x16 : ο . x16)(x4 = x15∀ x16 : ο . x16)(x5 = x15∀ x16 : ο . x16)(x6 = x15∀ x16 : ο . x16)(x7 = x15∀ x16 : ο . x16)(x8 = x15∀ x16 : ο . x16)00e19.. x0 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12 x13 x14 x1586706.. x2 x035fb6.. x2 x0False
Theorem c62c7.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)00e19.. x0 x2 x3 x4 x5 x6 x7843b8.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0False
...


previous assets