Search for blocks/addresses/...
Proofgold Address
address
PUekNp3bKyFQL79bWaiuhuSsWceS7M3CxY5
total
0
mg
-
conjpub
-
current assets
f841c..
/
9c2c6..
bday:
36385
doc published by
PrCmT..
Known
df_mfsh__df_mevl__df_mvl__df_mvsb__df_mfrel__df_mdl__df_musyn__df_gmdl__df_mitp__df_mfitp__df_irng__df_cplmet__df_homlimb__df_homlim__df_plfl__df_sfl1__df_sfl__df_psl
:
∀ x0 : ο .
(
wceq
cmfsh
(
cslot
c8
)
⟶
wceq
cmevl
(
cslot
c9
)
⟶
wceq
cmvl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cixp
(
λ x2 .
cfv
(
cv
x1
)
cmvar
)
(
λ x2 .
cima
(
cfv
(
cv
x1
)
cmuv
)
(
csn
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cmty
)
)
)
)
)
)
⟶
wceq
cmvsb
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
coprab
(
λ x2 x3 x4 .
w3a
(
wa
(
wcel
(
cv
x2
)
(
crn
(
cfv
(
cv
x1
)
cmsub
)
)
)
(
wcel
(
cv
x3
)
(
cfv
(
cv
x1
)
cmvl
)
)
)
(
wral
(
λ x5 .
wbr
(
cv
x3
)
(
cfv
(
cfv
(
cv
x5
)
(
cfv
(
cv
x1
)
cmvh
)
)
(
cv
x2
)
)
(
cdm
(
cfv
(
cv
x1
)
cmevl
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
cmvar
)
)
(
wceq
(
cv
x4
)
(
cmpt
(
λ x5 .
cfv
(
cv
x1
)
cmvar
)
(
λ x5 .
co
(
cv
x3
)
(
cfv
(
cfv
(
cv
x5
)
(
cfv
(
cv
x1
)
cmvh
)
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
cmevl
)
)
)
)
)
)
)
⟶
wceq
cmfr
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wceq
(
ccnv
(
cv
x2
)
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wrex
(
λ x5 .
wss
(
cv
x4
)
(
cima
(
cv
x2
)
(
csn
(
cv
x5
)
)
)
)
(
λ x5 .
cima
(
cfv
(
cv
x1
)
cmuv
)
(
csn
(
cv
x3
)
)
)
)
(
λ x4 .
cin
(
cpw
(
cfv
(
cv
x1
)
cmuv
)
)
cfn
)
)
(
λ x3 .
cfv
(
cv
x1
)
cmvt
)
)
)
(
λ x2 .
cpw
(
cxp
(
cfv
(
cv
x1
)
cmuv
)
(
cfv
(
cv
x1
)
cmuv
)
)
)
)
)
⟶
wceq
cmdl
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wa
(
w3a
(
wss
(
cv
x2
)
(
cxp
(
cfv
(
cv
x1
)
cmtc
)
cvv
)
)
(
wcel
(
cv
x6
)
(
cfv
(
cv
x1
)
cmfr
)
)
(
wcel
(
cv
x5
)
(
co
(
cv
x2
)
(
cxp
(
cv
x4
)
(
cfv
(
cv
x1
)
cmex
)
)
cpm
)
)
)
(
wral
(
λ x7 .
wa
(
w3a
(
wral
(
λ x8 .
wss
(
cima
(
cv
x5
)
(
csn
(
cop
(
cv
x7
)
(
cv
x8
)
)
)
)
(
cima
(
cv
x2
)
(
csn
(
cfv
(
cv
x8
)
c1st
)
)
)
)
(
λ x8 .
cv
x3
)
)
(
wral
(
λ x8 .
wbr
(
cop
(
cv
x7
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x1
)
cmvh
)
)
)
(
cfv
(
cv
x8
)
(
cv
x7
)
)
(
cv
x5
)
)
(
λ x8 .
cfv
(
cv
x1
)
cmvar
)
)
(
∀ x8 x9 x10 .
wcel
(
cotp
(
cv
x8
)
(
cv
x9
)
(
cv
x10
)
)
(
cfv
(
cv
x1
)
cmax
)
⟶
wa
(
∀ x11 x12 .
wbr
(
cv
x11
)
(
cv
x12
)
(
cv
x8
)
⟶
wbr
(
cfv
(
cv
x11
)
(
cv
x7
)
)
(
cfv
(
cv
x12
)
(
cv
x7
)
)
(
cv
x6
)
)
(
wss
(
cv
x9
)
(
cima
(
cdm
(
cv
x5
)
)
(
csn
(
cv
x7
)
)
)
)
⟶
wbr
(
cv
x7
)
(
cv
x10
)
(
cdm
(
cv
x5
)
)
)
)
(
w3a
(
wral
(
λ x8 .
wral
(
λ x9 .
∀ x10 .
wbr
(
cop
(
cv
x8
)
(
cv
x7
)
)
(
cv
x10
)
(
cfv
(
cv
x1
)
cmvsb
)
⟶
wceq
(
cima
(
cv
x5
)
(
csn
(
cop
(
cv
x7
)
(
cfv
(
cv
x9
)
(
cv
x8
)
)
)
)
)
(
cima
(
cv
x5
)
(
csn
(
cop
(
cv
x10
)
(
cv
x9
)
)
)
)
)
(
λ x9 .
cfv
(
cv
x1
)
cmex
)
)
(
λ x8 .
crn
(
cfv
(
cv
x1
)
cmsub
)
)
)
(
wral
(
λ x8 .
wral
(
λ x9 .
wceq
(
cres
(
cv
x7
)
(
cfv
(
cv
x9
)
(
cfv
(
cv
x1
)
cmvrs
)
)
)
(
cres
(
cv
x8
)
(
cfv
(
cv
x9
)
(
cfv
(
cv
x1
)
cmvrs
)
)
)
⟶
wceq
(
cima
(
cv
x5
)
(
csn
(
cop
(
cv
x7
)
(
cv
x9
)
)
)
)
(
cima
(
cv
x5
)
(
csn
(
cop
(
cv
x8
)
(
cv
x9
)
)
)
)
)
(
λ x9 .
cv
x3
)
)
(
λ x8 .
cv
x4
)
)
(
wral
(
λ x8 .
wral
(
λ x9 .
wss
(
cima
(
cv
x7
)
(
cfv
(
cv
x9
)
(
cfv
(
cv
x1
)
cmvrs
)
)
)
(
cima
(
cv
x6
)
(
csn
(
cv
x8
)
)
)
⟶
wss
(
cima
(
cv
x5
)
(
csn
(
cop
(
cv
x7
)
(
cv
x9
)
)
)
)
(
cima
(
cv
x6
)
(
csn
(
cv
x8
)
)
)
)
(
λ x9 .
cv
x3
)
)
(
λ x8 .
cv
x2
)
)
)
)
(
λ x7 .
cv
x4
)
)
)
(
cfv
(
cv
x1
)
cmfsh
)
)
(
cfv
(
cv
x1
)
cmevl
)
)
(
cfv
(
cv
x1
)
cmvl
)
)
(
cfv
(
cv
x1
)
cmex
)
)
(
cfv
(
cv
x1
)
cmuv
)
)
(
λ x1 .
cmfs
)
)
⟶
wceq
cusyn
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cmuv
)
(
λ x2 .
cop
(
cfv
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x1
)
cmsy
)
)
(
cfv
(
cv
x2
)
c2nd
)
)
)
)
⟶
(
∀ x1 .
wceq
cgmdl
(
crab
(
λ x2 .
w3a
(
wral
(
λ x3 .
wss
(
cima
(
cfv
(
cv
x2
)
cmuv
)
(
csn
(
cv
x3
)
)
)
(
cima
(
cfv
(
cv
x2
)
cmuv
)
(
csn
(
cfv
(
cv
x3
)
(
cfv
(
cv
x2
)
cmsy
)
)
)
)
)
(
λ x3 .
cfv
(
cv
x2
)
cmtc
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wb
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x2
)
cmfsh
)
)
(
wbr
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
cusyn
)
)
(
cfv
(
cv
x2
)
cmfsh
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cmuv
)
)
(
λ x3 .
cfv
(
cv
x1
)
cmuv
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
cima
(
cfv
(
cv
x2
)
cmevl
)
(
csn
(
cop
(
cv
x3
)
(
cv
x4
)
)
)
)
(
cin
(
cima
(
cfv
(
cv
x2
)
cmevl
)
(
csn
(
cop
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x2
)
cmesy
)
)
)
)
)
(
cima
(
cfv
(
cv
x2
)
cmuv
)
(
csn
(
cfv
(
cv
x4
)
c1st
)
)
)
)
)
(
λ x4 .
cfv
(
cv
x2
)
cmex
)
)
(
λ x3 .
cfv
(
cv
x2
)
cmvl
)
)
)
(
λ x2 .
cin
cmgfs
cmdl
)
)
)
⟶
wceq
cmitp
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cmsa
)
(
λ x2 .
cmpt
(
λ x3 .
cixp
(
λ x4 .
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cmvrs
)
)
(
λ x4 .
cima
(
cfv
(
cv
x1
)
cmuv
)
(
csn
(
cfv
(
cv
x4
)
(
cfv
(
cv
x1
)
cmty
)
)
)
)
)
(
λ x3 .
cio
(
λ x4 .
wrex
(
λ x5 .
wa
(
wceq
(
cv
x3
)
(
cres
(
cv
x5
)
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cmvrs
)
)
)
)
(
wceq
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmevl
)
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
cmvl
)
)
)
)
)
)
⟶
wceq
cmfitp
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cixp
(
λ x3 .
cfv
(
cv
x1
)
cmsa
)
(
λ x3 .
co
(
cima
(
cfv
(
cv
x1
)
cmuv
)
(
csn
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
c1st
)
)
)
)
(
cixp
(
λ x4 .
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
cmvrs
)
)
(
λ x4 .
cima
(
cfv
(
cv
x1
)
cmuv
)
(
csn
(
cfv
(
cv
x4
)
(
cfv
(
cv
x1
)
cmty
)
)
)
)
)
cmap
)
)
(
λ x2 .
crio
(
λ x3 .
wral
(
λ x4 .
w3a
(
wral
(
λ x5 .
wbr
(
cop
(
cv
x4
)
(
cfv
(
cv
x5
)
(
cfv
(
cv
x1
)
cmvh
)
)
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cv
x3
)
)
(
λ x5 .
cfv
(
cv
x1
)
cmvar
)
)
(
∀ x5 x6 x7 .
wbr
(
cv
x5
)
(
cop
(
cv
x6
)
(
cv
x7
)
)
(
cfv
(
cv
x1
)
cmst
)
⟶
wbr
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cfv
(
cmpt
(
λ x8 .
cfv
(
cv
x6
)
(
cfv
(
cv
x1
)
cmvrs
)
)
(
λ x8 .
co
(
cv
x4
)
(
cfv
(
cfv
(
cv
x8
)
(
cfv
(
cv
x1
)
cmvh
)
)
(
cv
x7
)
)
(
cv
x3
)
)
)
(
cv
x2
)
)
(
cv
x3
)
)
(
wral
(
λ x5 .
wceq
(
cima
(
cv
x3
)
(
csn
(
cop
(
cv
x4
)
(
cv
x5
)
)
)
)
(
cin
(
cima
(
cv
x3
)
(
csn
(
cop
(
cv
x4
)
(
cfv
(
cv
x5
)
(
cfv
(
cv
x1
)
cmesy
)
)
)
)
)
(
cima
(
cfv
(
cv
x1
)
cmuv
)
(
csn
(
cfv
(
cv
x5
)
c1st
)
)
)
)
)
(
λ x5 .
cfv
(
cv
x1
)
cmex
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cmvl
)
)
(
λ x3 .
co
(
cfv
(
cv
x1
)
cmuv
)
(
cxp
(
cfv
(
cv
x1
)
cmvl
)
(
cfv
(
cv
x1
)
cmex
)
)
cpm
)
)
)
)
⟶
wceq
citr
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
ciun
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cress
)
cmn1
)
(
λ x3 .
cima
(
ccnv
(
cv
x3
)
)
(
csn
(
cfv
(
cv
x1
)
c0g
)
)
)
)
)
⟶
wceq
ccpms
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
co
(
co
(
cv
x1
)
cn
cpws
)
(
cfv
(
cfv
(
cv
x1
)
cds
)
cca
)
cress
)
(
λ x2 .
csb
(
cfv
(
cv
x2
)
cbs
)
(
λ x3 .
csb
(
copab
(
λ x4 x5 .
wa
(
wss
(
cpr
(
cv
x4
)
(
cv
x5
)
)
(
cv
x3
)
)
(
wral
(
λ x6 .
wrex
(
λ x7 .
wf
(
cfv
(
cv
x7
)
cuz
)
(
co
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cv
x6
)
(
cfv
(
cfv
(
cv
x1
)
cds
)
cbl
)
)
(
cres
(
cv
x4
)
(
cfv
(
cv
x7
)
cuz
)
)
)
(
λ x7 .
cz
)
)
(
λ x6 .
crp
)
)
)
)
(
λ x4 .
co
(
co
(
cv
x2
)
(
cv
x4
)
cqus
)
(
csn
(
cop
(
cfv
cnx
cds
)
(
coprab
(
λ x5 x6 x7 .
wrex
(
λ x8 .
wrex
(
λ x9 .
wa
(
wa
(
wceq
(
cv
x5
)
(
cec
(
cv
x8
)
(
cv
x4
)
)
)
(
wceq
(
cv
x6
)
(
cec
(
cv
x9
)
(
cv
x4
)
)
)
)
(
wbr
(
co
(
cv
x8
)
(
cv
x9
)
(
cof
(
cfv
(
cv
x2
)
cds
)
)
)
(
cv
x7
)
cli
)
)
(
λ x9 .
cv
x3
)
)
(
λ x8 .
cv
x3
)
)
)
)
)
csts
)
)
)
)
)
⟶
wceq
chlb
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
ciun
(
λ x2 .
cn
)
(
λ x2 .
cxp
(
csn
(
cv
x2
)
)
(
cdm
(
cfv
(
cv
x2
)
(
cv
x1
)
)
)
)
)
(
λ x2 .
csb
(
cint
(
cab
(
λ x3 .
wa
(
wer
(
cv
x2
)
(
cv
x3
)
)
(
wss
(
cmpt
(
λ x4 .
cv
x2
)
(
λ x4 .
cop
(
co
(
cfv
(
cv
x4
)
c1st
)
c1
caddc
)
(
cfv
(
cfv
(
cv
x4
)
c2nd
)
(
cfv
(
cfv
(
cv
x4
)
c1st
)
(
cv
x1
)
)
)
)
)
(
cv
x3
)
)
)
)
)
(
λ x3 .
cop
(
cqs
(
cv
x2
)
(
cv
x3
)
)
(
cmpt
(
λ x4 .
cn
)
(
λ x4 .
cmpt
(
λ x5 .
cdm
(
cfv
(
cv
x4
)
(
cv
x1
)
)
)
(
λ x5 .
cec
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
cv
x3
)
)
)
)
)
)
)
)
⟶
wceq
chlim
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x2
)
chlb
)
(
λ x3 .
csb
(
cfv
(
cv
x3
)
c1st
)
(
λ x4 .
csb
(
cfv
(
cv
x3
)
c2nd
)
(
λ x5 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x4
)
)
(
cop
(
cfv
cnx
cplusg
)
(
ciun
(
λ x6 .
cn
)
(
λ x6 .
crn
(
cmpt2
(
λ x7 x8 .
cdm
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
(
λ x7 x8 .
cdm
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
(
λ x7 x8 .
cop
(
cop
(
cfv
(
cv
x7
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
)
(
cfv
(
co
(
cv
x7
)
(
cv
x8
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x1
)
)
cplusg
)
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
ciun
(
λ x6 .
cn
)
(
λ x6 .
crn
(
cmpt2
(
λ x7 x8 .
cdm
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
(
λ x7 x8 .
cdm
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
(
λ x7 x8 .
cop
(
cop
(
cfv
(
cv
x7
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
)
(
cfv
(
co
(
cv
x7
)
(
cv
x8
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x1
)
)
cmulr
)
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
)
)
)
)
)
)
(
ctp
(
cop
(
cfv
cnx
ctopn
)
(
crab
(
λ x6 .
wral
(
λ x7 .
wcel
(
cima
(
ccnv
(
cfv
(
cv
x7
)
(
cv
x5
)
)
)
(
cv
x6
)
)
(
cfv
(
cfv
(
cv
x7
)
(
cv
x1
)
)
ctopn
)
)
(
λ x7 .
cn
)
)
(
λ x6 .
cpw
(
cv
x4
)
)
)
)
(
cop
(
cfv
cnx
cds
)
(
ciun
(
λ x6 .
cn
)
(
λ x6 .
crn
(
cmpt2
(
λ x7 x8 .
cdm
(
cfv
(
cv
x6
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
)
(
λ x7 x8 .
cdm
(
cfv
(
cv
x6
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
)
(
λ x7 x8 .
cop
(
cop
(
cfv
(
cv
x7
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
)
(
co
(
cv
x7
)
(
cv
x8
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x1
)
)
cds
)
)
)
)
)
)
)
(
cop
(
cfv
cnx
cple
)
(
ciun
(
λ x6 .
cn
)
(
λ x6 .
ccom
(
ccnv
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
(
ccom
(
cfv
(
cfv
(
cv
x6
)
(
cv
x1
)
)
cple
)
(
cfv
(
cv
x6
)
(
cv
x5
)
)
)
)
)
)
)
)
)
)
)
)
⟶
wceq
cpfl
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x1
)
cpl1
)
(
λ x3 .
csb
(
cfv
(
csn
(
cv
x2
)
)
(
cfv
(
cv
x3
)
crsp
)
)
(
λ x4 .
csb
(
cmpt
(
λ x5 .
cfv
(
cv
x1
)
cbs
)
(
λ x5 .
cec
(
co
(
cv
x5
)
(
cfv
(
cv
x3
)
cur
)
(
cfv
(
cv
x3
)
cvsca
)
)
(
co
(
cv
x3
)
(
cv
x4
)
cqg
)
)
)
(
λ x5 .
cop
(
csb
(
co
(
cv
x3
)
(
co
(
cv
x3
)
(
cv
x4
)
cqg
)
cqus
)
(
λ x6 .
co
(
co
(
cv
x6
)
(
crio
(
λ x7 .
wceq
(
ccom
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x1
)
cnm
)
)
(
λ x7 .
cfv
(
cv
x6
)
cabv
)
)
ctng
)
(
cop
(
cfv
cnx
cple
)
(
csb
(
cmpt
(
λ x7 .
cfv
(
cv
x6
)
cbs
)
(
λ x7 .
crio
(
λ x8 .
wbr
(
co
(
cv
x1
)
(
cv
x8
)
cdg1
)
(
co
(
cv
x1
)
(
cv
x2
)
cdg1
)
clt
)
(
λ x8 .
cv
x7
)
)
)
(
λ x7 .
ccom
(
ccnv
(
cv
x7
)
)
(
ccom
(
cfv
(
cv
x3
)
cple
)
(
cv
x7
)
)
)
)
)
csts
)
)
(
cv
x5
)
)
)
)
)
)
⟶
wceq
csf1
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cfv
(
cv
x1
)
cpl1
)
(
λ x3 .
cfv
(
cfv
(
co
c1
(
co
(
cv
x1
)
(
cv
x3
)
cdg1
)
cfz
)
ccrd
)
(
crdg
(
cmpt2
(
λ x4 x5 .
cvv
)
(
λ x4 x5 .
cvv
)
(
λ x4 x5 .
csb
(
cfv
(
cv
x4
)
cmpl
)
(
λ x6 .
csb
(
crab
(
λ x7 .
wa
(
wbr
(
cv
x7
)
(
ccom
(
cv
x3
)
(
cv
x5
)
)
(
cfv
(
cv
x6
)
cdsr
)
)
(
wbr
c1
(
co
(
cv
x4
)
(
cv
x7
)
cdg1
)
clt
)
)
(
λ x7 .
cin
(
cfv
(
cv
x4
)
cmn1
)
(
cfv
(
cv
x6
)
cir
)
)
)
(
λ x7 .
cif
(
wo
(
wceq
(
ccom
(
cv
x3
)
(
cv
x5
)
)
(
cfv
(
cv
x6
)
c0g
)
)
(
wceq
(
cv
x7
)
c0
)
)
(
cop
(
cv
x4
)
(
cv
x5
)
)
(
csb
(
cfv
(
cv
x7
)
cglb
)
(
λ x8 .
csb
(
co
(
cv
x4
)
(
cv
x8
)
cpfl
)
(
λ x9 .
cop
(
cfv
(
cv
x9
)
c1st
)
(
ccom
(
cv
x5
)
(
cfv
(
cv
x9
)
c2nd
)
)
)
)
)
)
)
)
)
(
cv
x2
)
)
)
)
)
⟶
wceq
csf
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cio
(
λ x3 .
wex
(
λ x4 .
wa
(
wiso
(
co
c1
(
cfv
(
cv
x2
)
chash
)
cfz
)
(
cv
x2
)
clt
(
cfv
(
cv
x1
)
cplt
)
(
cv
x4
)
)
(
wceq
(
cv
x3
)
(
cfv
(
cfv
(
cv
x2
)
chash
)
(
cseq
(
cmpt2
(
λ x5 x6 .
cvv
)
(
λ x5 x6 .
cvv
)
(
λ x5 x6 .
cfv
(
cv
x6
)
(
co
(
cv
x1
)
(
cv
x5
)
csf1
)
)
)
(
cun
(
cv
x4
)
(
csn
(
cop
cc0
(
cop
(
cv
x1
)
(
cres
cid
(
cfv
(
cv
x1
)
cbs
)
)
)
)
)
)
cc0
)
)
)
)
)
)
)
⟶
wceq
cpsl
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
cin
(
cpw
(
cfv
(
cv
x1
)
cbs
)
)
cfn
)
cn
cmap
)
(
λ x1 x2 .
csb
(
ccom
c1st
(
cseq
(
cmpt2
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
csb
(
cfv
(
cv
x3
)
c1st
)
(
λ x5 .
csb
(
cfv
(
cv
x5
)
c1st
)
(
λ x6 .
csb
(
co
(
cv
x6
)
(
crn
(
cmpt
(
λ x7 .
cv
x4
)
(
λ x7 .
ccom
(
cv
x7
)
(
cfv
(
cv
x3
)
c2nd
)
)
)
)
csf
)
(
λ x7 .
cop
(
cv
x7
)
(
ccom
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cv
x7
)
c2nd
)
)
)
)
)
)
)
(
cun
(
cv
x2
)
(
csn
(
cop
cc0
(
cop
(
cop
(
cv
x1
)
c0
)
(
cres
cid
(
cfv
(
cv
x1
)
cbs
)
)
)
)
)
)
cc0
)
)
(
λ x3 .
co
(
ccom
c1st
(
co
(
cv
x3
)
c1
cshi
)
)
(
ccom
c2nd
(
cv
x3
)
)
chlim
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_mfsh
:
wceq
cmfsh
(
cslot
c8
)
(proof)
Theorem
df_mevl
:
wceq
cmevl
(
cslot
c9
)
(proof)
Theorem
df_mvl
:
wceq
cmvl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cixp
(
λ x1 .
cfv
(
cv
x0
)
cmvar
)
(
λ x1 .
cima
(
cfv
(
cv
x0
)
cmuv
)
(
csn
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cmty
)
)
)
)
)
)
(proof)
Theorem
df_mvsb
:
wceq
cmvsb
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
coprab
(
λ x1 x2 x3 .
w3a
(
wa
(
wcel
(
cv
x1
)
(
crn
(
cfv
(
cv
x0
)
cmsub
)
)
)
(
wcel
(
cv
x2
)
(
cfv
(
cv
x0
)
cmvl
)
)
)
(
wral
(
λ x4 .
wbr
(
cv
x2
)
(
cfv
(
cfv
(
cv
x4
)
(
cfv
(
cv
x0
)
cmvh
)
)
(
cv
x1
)
)
(
cdm
(
cfv
(
cv
x0
)
cmevl
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
cmvar
)
)
(
wceq
(
cv
x3
)
(
cmpt
(
λ x4 .
cfv
(
cv
x0
)
cmvar
)
(
λ x4 .
co
(
cv
x2
)
(
cfv
(
cfv
(
cv
x4
)
(
cfv
(
cv
x0
)
cmvh
)
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
cmevl
)
)
)
)
)
)
)
(proof)
Theorem
df_mfrel
:
wceq
cmfr
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wceq
(
ccnv
(
cv
x1
)
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wrex
(
λ x4 .
wss
(
cv
x3
)
(
cima
(
cv
x1
)
(
csn
(
cv
x4
)
)
)
)
(
λ x4 .
cima
(
cfv
(
cv
x0
)
cmuv
)
(
csn
(
cv
x2
)
)
)
)
(
λ x3 .
cin
(
cpw
(
cfv
(
cv
x0
)
cmuv
)
)
cfn
)
)
(
λ x2 .
cfv
(
cv
x0
)
cmvt
)
)
)
(
λ x1 .
cpw
(
cxp
(
cfv
(
cv
x0
)
cmuv
)
(
cfv
(
cv
x0
)
cmuv
)
)
)
)
)
(proof)
Theorem
df_mdl
:
wceq
cmdl
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wa
(
w3a
(
wss
(
cv
x1
)
(
cxp
(
cfv
(
cv
x0
)
cmtc
)
cvv
)
)
(
wcel
(
cv
x5
)
(
cfv
(
cv
x0
)
cmfr
)
)
(
wcel
(
cv
x4
)
(
co
(
cv
x1
)
(
cxp
(
cv
x3
)
(
cfv
(
cv
x0
)
cmex
)
)
cpm
)
)
)
(
wral
(
λ x6 .
wa
(
w3a
(
wral
(
λ x7 .
wss
(
cima
(
cv
x4
)
(
csn
(
cop
(
cv
x6
)
(
cv
x7
)
)
)
)
(
cima
(
cv
x1
)
(
csn
(
cfv
(
cv
x7
)
c1st
)
)
)
)
(
λ x7 .
cv
x2
)
)
(
wral
(
λ x7 .
wbr
(
cop
(
cv
x6
)
(
cfv
(
cv
x7
)
(
cfv
(
cv
x0
)
cmvh
)
)
)
(
cfv
(
cv
x7
)
(
cv
x6
)
)
(
cv
x4
)
)
(
λ x7 .
cfv
(
cv
x0
)
cmvar
)
)
(
∀ x7 x8 x9 .
wcel
(
cotp
(
cv
x7
)
(
cv
x8
)
(
cv
x9
)
)
(
cfv
(
cv
x0
)
cmax
)
⟶
wa
(
∀ x10 x11 .
wbr
(
cv
x10
)
(
cv
x11
)
(
cv
x7
)
⟶
wbr
(
cfv
(
cv
x10
)
(
cv
x6
)
)
(
cfv
(
cv
x11
)
(
cv
x6
)
)
(
cv
x5
)
)
(
wss
(
cv
x8
)
(
cima
(
cdm
(
cv
x4
)
)
(
csn
(
cv
x6
)
)
)
)
⟶
wbr
(
cv
x6
)
(
cv
x9
)
(
cdm
(
cv
x4
)
)
)
)
(
w3a
(
wral
(
λ x7 .
wral
(
λ x8 .
∀ x9 .
wbr
(
cop
(
cv
x7
)
(
cv
x6
)
)
(
cv
x9
)
(
cfv
(
cv
x0
)
cmvsb
)
⟶
wceq
(
cima
(
cv
x4
)
(
csn
(
cop
(
cv
x6
)
(
cfv
(
cv
x8
)
(
cv
x7
)
)
)
)
)
(
cima
(
cv
x4
)
(
csn
(
cop
(
cv
x9
)
(
cv
x8
)
)
)
)
)
(
λ x8 .
cfv
(
cv
x0
)
cmex
)
)
(
λ x7 .
crn
(
cfv
(
cv
x0
)
cmsub
)
)
)
(
wral
(
λ x7 .
wral
(
λ x8 .
wceq
(
cres
(
cv
x6
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x0
)
cmvrs
)
)
)
(
cres
(
cv
x7
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x0
)
cmvrs
)
)
)
⟶
wceq
(
cima
(
cv
x4
)
(
csn
(
cop
(
cv
x6
)
(
cv
x8
)
)
)
)
(
cima
(
cv
x4
)
(
csn
(
cop
(
cv
x7
)
(
cv
x8
)
)
)
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
cv
x3
)
)
(
wral
(
λ x7 .
wral
(
λ x8 .
wss
(
cima
(
cv
x6
)
(
cfv
(
cv
x8
)
(
cfv
(
cv
x0
)
cmvrs
)
)
)
(
cima
(
cv
x5
)
(
csn
(
cv
x7
)
)
)
⟶
wss
(
cima
(
cv
x4
)
(
csn
(
cop
(
cv
x6
)
(
cv
x8
)
)
)
)
(
cima
(
cv
x5
)
(
csn
(
cv
x7
)
)
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
cv
x1
)
)
)
)
(
λ x6 .
cv
x3
)
)
)
(
cfv
(
cv
x0
)
cmfsh
)
)
(
cfv
(
cv
x0
)
cmevl
)
)
(
cfv
(
cv
x0
)
cmvl
)
)
(
cfv
(
cv
x0
)
cmex
)
)
(
cfv
(
cv
x0
)
cmuv
)
)
(
λ x0 .
cmfs
)
)
(proof)
Theorem
df_musyn
:
wceq
cusyn
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cmuv
)
(
λ x1 .
cop
(
cfv
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x0
)
cmsy
)
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
)
(proof)
Theorem
df_gmdl
:
∀ x0 .
wceq
cgmdl
(
crab
(
λ x1 .
w3a
(
wral
(
λ x2 .
wss
(
cima
(
cfv
(
cv
x1
)
cmuv
)
(
csn
(
cv
x2
)
)
)
(
cima
(
cfv
(
cv
x1
)
cmuv
)
(
csn
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
cmsy
)
)
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
cmtc
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wb
(
wbr
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cmfsh
)
)
(
wbr
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
cusyn
)
)
(
cfv
(
cv
x1
)
cmfsh
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cmuv
)
)
(
λ x2 .
cfv
(
cv
x0
)
cmuv
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
cima
(
cfv
(
cv
x1
)
cmevl
)
(
csn
(
cop
(
cv
x2
)
(
cv
x3
)
)
)
)
(
cin
(
cima
(
cfv
(
cv
x1
)
cmevl
)
(
csn
(
cop
(
cv
x2
)
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
cmesy
)
)
)
)
)
(
cima
(
cfv
(
cv
x1
)
cmuv
)
(
csn
(
cfv
(
cv
x3
)
c1st
)
)
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cmex
)
)
(
λ x2 .
cfv
(
cv
x1
)
cmvl
)
)
)
(
λ x1 .
cin
cmgfs
cmdl
)
)
(proof)
Theorem
df_mitp
:
wceq
cmitp
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cmsa
)
(
λ x1 .
cmpt
(
λ x2 .
cixp
(
λ x3 .
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cmvrs
)
)
(
λ x3 .
cima
(
cfv
(
cv
x0
)
cmuv
)
(
csn
(
cfv
(
cv
x3
)
(
cfv
(
cv
x0
)
cmty
)
)
)
)
)
(
λ x2 .
cio
(
λ x3 .
wrex
(
λ x4 .
wa
(
wceq
(
cv
x2
)
(
cres
(
cv
x4
)
(
cfv
(
cv
x1
)
(
cfv
(
cv
x0
)
cmvrs
)
)
)
)
(
wceq
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmevl
)
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
cmvl
)
)
)
)
)
)
(proof)
Theorem
df_mfitp
:
wceq
cmfitp
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cixp
(
λ x2 .
cfv
(
cv
x0
)
cmsa
)
(
λ x2 .
co
(
cima
(
cfv
(
cv
x0
)
cmuv
)
(
csn
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
c1st
)
)
)
)
(
cixp
(
λ x3 .
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
cmvrs
)
)
(
λ x3 .
cima
(
cfv
(
cv
x0
)
cmuv
)
(
csn
(
cfv
(
cv
x3
)
(
cfv
(
cv
x0
)
cmty
)
)
)
)
)
cmap
)
)
(
λ x1 .
crio
(
λ x2 .
wral
(
λ x3 .
w3a
(
wral
(
λ x4 .
wbr
(
cop
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x0
)
cmvh
)
)
)
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cv
x2
)
)
(
λ x4 .
cfv
(
cv
x0
)
cmvar
)
)
(
∀ x4 x5 x6 .
wbr
(
cv
x4
)
(
cop
(
cv
x5
)
(
cv
x6
)
)
(
cfv
(
cv
x0
)
cmst
)
⟶
wbr
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cfv
(
cmpt
(
λ x7 .
cfv
(
cv
x5
)
(
cfv
(
cv
x0
)
cmvrs
)
)
(
λ x7 .
co
(
cv
x3
)
(
cfv
(
cfv
(
cv
x7
)
(
cfv
(
cv
x0
)
cmvh
)
)
(
cv
x6
)
)
(
cv
x2
)
)
)
(
cv
x1
)
)
(
cv
x2
)
)
(
wral
(
λ x4 .
wceq
(
cima
(
cv
x2
)
(
csn
(
cop
(
cv
x3
)
(
cv
x4
)
)
)
)
(
cin
(
cima
(
cv
x2
)
(
csn
(
cop
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cfv
(
cv
x0
)
cmesy
)
)
)
)
)
(
cima
(
cfv
(
cv
x0
)
cmuv
)
(
csn
(
cfv
(
cv
x4
)
c1st
)
)
)
)
)
(
λ x4 .
cfv
(
cv
x0
)
cmex
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cmvl
)
)
(
λ x2 .
co
(
cfv
(
cv
x0
)
cmuv
)
(
cxp
(
cfv
(
cv
x0
)
cmvl
)
(
cfv
(
cv
x0
)
cmex
)
)
cpm
)
)
)
)
(proof)
Theorem
df_irng
:
wceq
citr
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
ciun
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cress
)
cmn1
)
(
λ x2 .
cima
(
ccnv
(
cv
x2
)
)
(
csn
(
cfv
(
cv
x0
)
c0g
)
)
)
)
)
(proof)
Theorem
df_cplmet
:
wceq
ccpms
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
co
(
co
(
cv
x0
)
cn
cpws
)
(
cfv
(
cfv
(
cv
x0
)
cds
)
cca
)
cress
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
csb
(
copab
(
λ x3 x4 .
wa
(
wss
(
cpr
(
cv
x3
)
(
cv
x4
)
)
(
cv
x2
)
)
(
wral
(
λ x5 .
wrex
(
λ x6 .
wf
(
cfv
(
cv
x6
)
cuz
)
(
co
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cv
x5
)
(
cfv
(
cfv
(
cv
x0
)
cds
)
cbl
)
)
(
cres
(
cv
x3
)
(
cfv
(
cv
x6
)
cuz
)
)
)
(
λ x6 .
cz
)
)
(
λ x5 .
crp
)
)
)
)
(
λ x3 .
co
(
co
(
cv
x1
)
(
cv
x3
)
cqus
)
(
csn
(
cop
(
cfv
cnx
cds
)
(
coprab
(
λ x4 x5 x6 .
wrex
(
λ x7 .
wrex
(
λ x8 .
wa
(
wa
(
wceq
(
cv
x4
)
(
cec
(
cv
x7
)
(
cv
x3
)
)
)
(
wceq
(
cv
x5
)
(
cec
(
cv
x8
)
(
cv
x3
)
)
)
)
(
wbr
(
co
(
cv
x7
)
(
cv
x8
)
(
cof
(
cfv
(
cv
x1
)
cds
)
)
)
(
cv
x6
)
cli
)
)
(
λ x8 .
cv
x2
)
)
(
λ x7 .
cv
x2
)
)
)
)
)
csts
)
)
)
)
)
(proof)
Theorem
df_homlimb
:
wceq
chlb
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
ciun
(
λ x1 .
cn
)
(
λ x1 .
cxp
(
csn
(
cv
x1
)
)
(
cdm
(
cfv
(
cv
x1
)
(
cv
x0
)
)
)
)
)
(
λ x1 .
csb
(
cint
(
cab
(
λ x2 .
wa
(
wer
(
cv
x1
)
(
cv
x2
)
)
(
wss
(
cmpt
(
λ x3 .
cv
x1
)
(
λ x3 .
cop
(
co
(
cfv
(
cv
x3
)
c1st
)
c1
caddc
)
(
cfv
(
cfv
(
cv
x3
)
c2nd
)
(
cfv
(
cfv
(
cv
x3
)
c1st
)
(
cv
x0
)
)
)
)
)
(
cv
x2
)
)
)
)
)
(
λ x2 .
cop
(
cqs
(
cv
x1
)
(
cv
x2
)
)
(
cmpt
(
λ x3 .
cn
)
(
λ x3 .
cmpt
(
λ x4 .
cdm
(
cfv
(
cv
x3
)
(
cv
x0
)
)
)
(
λ x4 .
cec
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
cv
x2
)
)
)
)
)
)
)
)
(proof)
Theorem
df_homlim
:
wceq
chlim
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x1
)
chlb
)
(
λ x2 .
csb
(
cfv
(
cv
x2
)
c1st
)
(
λ x3 .
csb
(
cfv
(
cv
x2
)
c2nd
)
(
λ x4 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x3
)
)
(
cop
(
cfv
cnx
cplusg
)
(
ciun
(
λ x5 .
cn
)
(
λ x5 .
crn
(
cmpt2
(
λ x6 x7 .
cdm
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
(
λ x6 x7 .
cdm
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
(
λ x6 x7 .
cop
(
cop
(
cfv
(
cv
x6
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
(
cfv
(
cv
x7
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
(
cfv
(
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cfv
(
cv
x5
)
(
cv
x0
)
)
cplusg
)
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
ciun
(
λ x5 .
cn
)
(
λ x5 .
crn
(
cmpt2
(
λ x6 x7 .
cdm
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
(
λ x6 x7 .
cdm
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
(
λ x6 x7 .
cop
(
cop
(
cfv
(
cv
x6
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
(
cfv
(
cv
x7
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
(
cfv
(
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cfv
(
cv
x5
)
(
cv
x0
)
)
cmulr
)
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
)
)
)
)
)
(
ctp
(
cop
(
cfv
cnx
ctopn
)
(
crab
(
λ x5 .
wral
(
λ x6 .
wcel
(
cima
(
ccnv
(
cfv
(
cv
x6
)
(
cv
x4
)
)
)
(
cv
x5
)
)
(
cfv
(
cfv
(
cv
x6
)
(
cv
x0
)
)
ctopn
)
)
(
λ x6 .
cn
)
)
(
λ x5 .
cpw
(
cv
x3
)
)
)
)
(
cop
(
cfv
cnx
cds
)
(
ciun
(
λ x5 .
cn
)
(
λ x5 .
crn
(
cmpt2
(
λ x6 x7 .
cdm
(
cfv
(
cv
x5
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
(
λ x6 x7 .
cdm
(
cfv
(
cv
x5
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
(
λ x6 x7 .
cop
(
cop
(
cfv
(
cv
x6
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
(
cfv
(
cv
x7
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cfv
(
cv
x5
)
(
cv
x0
)
)
cds
)
)
)
)
)
)
)
(
cop
(
cfv
cnx
cple
)
(
ciun
(
λ x5 .
cn
)
(
λ x5 .
ccom
(
ccnv
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
(
ccom
(
cfv
(
cfv
(
cv
x5
)
(
cv
x0
)
)
cple
)
(
cfv
(
cv
x5
)
(
cv
x4
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
df_plfl
:
wceq
cpfl
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x0
)
cpl1
)
(
λ x2 .
csb
(
cfv
(
csn
(
cv
x1
)
)
(
cfv
(
cv
x2
)
crsp
)
)
(
λ x3 .
csb
(
cmpt
(
λ x4 .
cfv
(
cv
x0
)
cbs
)
(
λ x4 .
cec
(
co
(
cv
x4
)
(
cfv
(
cv
x2
)
cur
)
(
cfv
(
cv
x2
)
cvsca
)
)
(
co
(
cv
x2
)
(
cv
x3
)
cqg
)
)
)
(
λ x4 .
cop
(
csb
(
co
(
cv
x2
)
(
co
(
cv
x2
)
(
cv
x3
)
cqg
)
cqus
)
(
λ x5 .
co
(
co
(
cv
x5
)
(
crio
(
λ x6 .
wceq
(
ccom
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x0
)
cnm
)
)
(
λ x6 .
cfv
(
cv
x5
)
cabv
)
)
ctng
)
(
cop
(
cfv
cnx
cple
)
(
csb
(
cmpt
(
λ x6 .
cfv
(
cv
x5
)
cbs
)
(
λ x6 .
crio
(
λ x7 .
wbr
(
co
(
cv
x0
)
(
cv
x7
)
cdg1
)
(
co
(
cv
x0
)
(
cv
x1
)
cdg1
)
clt
)
(
λ x7 .
cv
x6
)
)
)
(
λ x6 .
ccom
(
ccnv
(
cv
x6
)
)
(
ccom
(
cfv
(
cv
x2
)
cple
)
(
cv
x6
)
)
)
)
)
csts
)
)
(
cv
x4
)
)
)
)
)
)
(proof)
Theorem
df_sfl1
:
wceq
csf1
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cfv
(
cv
x0
)
cpl1
)
(
λ x2 .
cfv
(
cfv
(
co
c1
(
co
(
cv
x0
)
(
cv
x2
)
cdg1
)
cfz
)
ccrd
)
(
crdg
(
cmpt2
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
cvv
)
(
λ x3 x4 .
csb
(
cfv
(
cv
x3
)
cmpl
)
(
λ x5 .
csb
(
crab
(
λ x6 .
wa
(
wbr
(
cv
x6
)
(
ccom
(
cv
x2
)
(
cv
x4
)
)
(
cfv
(
cv
x5
)
cdsr
)
)
(
wbr
c1
(
co
(
cv
x3
)
(
cv
x6
)
cdg1
)
clt
)
)
(
λ x6 .
cin
(
cfv
(
cv
x3
)
cmn1
)
(
cfv
(
cv
x5
)
cir
)
)
)
(
λ x6 .
cif
(
wo
(
wceq
(
ccom
(
cv
x2
)
(
cv
x4
)
)
(
cfv
(
cv
x5
)
c0g
)
)
(
wceq
(
cv
x6
)
c0
)
)
(
cop
(
cv
x3
)
(
cv
x4
)
)
(
csb
(
cfv
(
cv
x6
)
cglb
)
(
λ x7 .
csb
(
co
(
cv
x3
)
(
cv
x7
)
cpfl
)
(
λ x8 .
cop
(
cfv
(
cv
x8
)
c1st
)
(
ccom
(
cv
x4
)
(
cfv
(
cv
x8
)
c2nd
)
)
)
)
)
)
)
)
)
(
cv
x1
)
)
)
)
)
(proof)
Theorem
df_sfl
:
wceq
csf
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cio
(
λ x2 .
wex
(
λ x3 .
wa
(
wiso
(
co
c1
(
cfv
(
cv
x1
)
chash
)
cfz
)
(
cv
x1
)
clt
(
cfv
(
cv
x0
)
cplt
)
(
cv
x3
)
)
(
wceq
(
cv
x2
)
(
cfv
(
cfv
(
cv
x1
)
chash
)
(
cseq
(
cmpt2
(
λ x4 x5 .
cvv
)
(
λ x4 x5 .
cvv
)
(
λ x4 x5 .
cfv
(
cv
x5
)
(
co
(
cv
x0
)
(
cv
x4
)
csf1
)
)
)
(
cun
(
cv
x3
)
(
csn
(
cop
cc0
(
cop
(
cv
x0
)
(
cres
cid
(
cfv
(
cv
x0
)
cbs
)
)
)
)
)
)
cc0
)
)
)
)
)
)
)
(proof)
Theorem
df_psl
:
wceq
cpsl
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
cin
(
cpw
(
cfv
(
cv
x0
)
cbs
)
)
cfn
)
cn
cmap
)
(
λ x0 x1 .
csb
(
ccom
c1st
(
cseq
(
cmpt2
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
cvv
)
(
λ x2 x3 .
csb
(
cfv
(
cv
x2
)
c1st
)
(
λ x4 .
csb
(
cfv
(
cv
x4
)
c1st
)
(
λ x5 .
csb
(
co
(
cv
x5
)
(
crn
(
cmpt
(
λ x6 .
cv
x3
)
(
λ x6 .
ccom
(
cv
x6
)
(
cfv
(
cv
x2
)
c2nd
)
)
)
)
csf
)
(
λ x6 .
cop
(
cv
x6
)
(
ccom
(
cfv
(
cv
x2
)
c2nd
)
(
cfv
(
cv
x6
)
c2nd
)
)
)
)
)
)
)
(
cun
(
cv
x1
)
(
csn
(
cop
cc0
(
cop
(
cop
(
cv
x0
)
c0
)
(
cres
cid
(
cfv
(
cv
x0
)
cbs
)
)
)
)
)
)
cc0
)
)
(
λ x2 .
co
(
ccom
c1st
(
co
(
cv
x2
)
c1
cshi
)
)
(
ccom
c2nd
(
cv
x2
)
)
chlim
)
)
)
(proof)
previous assets