Search for blocks/addresses/...

Proofgold Address

address
PUesRRLYUozdMhHQcHkaBdTPjR9w4dx8zxx
total
0
mg
-
conjpub
-
current assets
1a18d../a5476.. bday: 28305 doc published by Pr4zB..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Param u3 : ι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param setminussetminus : ιιι
Param SepSep : ι(ιο) → ι
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Param SingSing : ιι
Param binunionbinunion : ιιι
Param equipequip : ιιο
Param binintersectbinintersect : ιιι
Definition nInnIn := λ x0 x1 . not (x0x1)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2binintersect x0 x1and (x2x0) (x2x1)
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known cfabd.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2x2DirGraphOutNeighbors x0 x1 x3
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Param SetAdjoinSetAdjoin : ιιι
Param UPairUPair : ιιι
Known aa241.. : ∀ x0 x1 x2 . ∀ x3 : ι → ο . x3 x0x3 x1x3 x2∀ x4 . x4SetAdjoin (UPair x0 x1) x2x3 x4
Known 5d098.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)atleastp u3 x0
Known 6be8c.. : ∀ x0 x1 x2 . x0SetAdjoin (UPair x0 x1) x2
Known 535ce.. : ∀ x0 x1 x2 . x1SetAdjoin (UPair x0 x1) x2
Known f4e2f.. : ∀ x0 x1 x2 . x2SetAdjoin (UPair x0 x1) x2
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem edcee.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x9x0x11x0x8 = setminus (DirGraphOutNeighbors x0 x1 x4) (Sing x5)x10 = setminus (DirGraphOutNeighbors x0 x1 x5) (Sing x4)x9 = {x13 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x4) (Sing x4))|equip (binintersect (DirGraphOutNeighbors x0 x1 x13) (DirGraphOutNeighbors x0 x1 x4)) x2}x11 = setminus {x13 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x4) (Sing x4))|equip (binintersect (DirGraphOutNeighbors x0 x1 x13) (DirGraphOutNeighbors x0 x1 x4)) x3} x10(∀ x12 . x12x9nIn x12 x8)(∀ x12 . x12x9nIn x12 x11)(∀ x12 . x12x8nIn x12 x11)x6x9x7x11x1 x6 x7∀ x12 x13 : ι → ι . x1 x6 (x12 x6)(∀ x14 . x14x8x13 x14{x15 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x4) (Sing x4))|equip (binintersect (DirGraphOutNeighbors x0 x1 x15) (DirGraphOutNeighbors x0 x1 x4)) x2})(∀ x14 . x14x8x12 (x13 x14) = x14)atleastp x3 {x14 ∈ setminus x9 (Sing x6)|x1 (x12 x14) x7} (proof)
Param u6 : ι
Theorem c283f.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))(∀ x2 . x2x0atleastp u6 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)))∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 . x9x0x11x0x8 = setminus (DirGraphOutNeighbors x0 x1 x4) (Sing x5)x10 = setminus (DirGraphOutNeighbors x0 x1 x5) (Sing x4)x9 = {x13 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x4) (Sing x4))|equip (binintersect (DirGraphOutNeighbors x0 x1 x13) (DirGraphOutNeighbors x0 x1 x4)) x2}x11 = setminus {x13 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x4) (Sing x4))|equip (binintersect (DirGraphOutNeighbors x0 x1 x13) (DirGraphOutNeighbors x0 x1 x4)) x3} x10(∀ x12 . x12x9nIn x12 x8)(∀ x12 . x12x9nIn x12 x11)(∀ x12 . x12x8nIn x12 x11)x6x9x7x11x1 x6 x7∀ x12 x13 : ι → ι . x1 x6 (x12 x6)(∀ x14 . x14x8x13 x14{x15 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x4) (Sing x4))|equip (binintersect (DirGraphOutNeighbors x0 x1 x15) (DirGraphOutNeighbors x0 x1 x4)) x2})(∀ x14 . x14x8x12 (x13 x14) = x14)atleastp x3 {x14 ∈ setminus x9 (Sing x6)|x1 (x12 x14) x7} (proof)

previous assets