current assets |
---|
6f2c0../3aa60.. bday: 20898 doc published by Pr4zB..Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseKnown FalseEFalseE : False ⟶ ∀ x0 : ο . x0Theorem 3c838.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι → ι → ο . (∀ x3 x4 x5 x6 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ ∀ x7 : ο . (x1 x3 x4 x5 x6 ⟶ x7) ⟶ (x2 x3 x4 x5 x6 ⟶ x7) ⟶ (x1 x5 x6 x3 x4 ⟶ x7) ⟶ x7) ⟶ (∀ x3 x4 x5 x6 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x2 x3 x4 x5 x6 ⟶ x2 x5 x6 x3 x4) ⟶ ∀ x3 . x0 x3 ⟶ ∀ x4 . x0 x4 ⟶ ∀ x5 . x0 x5 ⟶ ∀ x6 . x0 x6 ⟶ ∀ x7 . x0 x7 ⟶ ∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ ∀ x11 . x0 x11 ⟶ ∀ x12 . x0 x12 ⟶ ∀ x13 . x0 x13 ⟶ ∀ x14 . x0 x14 ⟶ not (x2 x3 x4 x5 x6) ⟶ not (x2 x3 x4 x7 x8) ⟶ not (x2 x3 x4 x9 x10) ⟶ not (x2 x3 x4 x11 x12) ⟶ not (x2 x3 x4 x13 x14) ⟶ not (x2 x5 x6 x7 x8) ⟶ not (x2 x5 x6 x9 x10) ⟶ not (x2 x5 x6 x11 x12) ⟶ not (x2 x5 x6 x13 x14) ⟶ not (x2 x7 x8 x9 x10) ⟶ not (x2 x7 x8 x11 x12) ⟶ not (x2 x7 x8 x13 x14) ⟶ not (x2 x9 x10 x11 x12) ⟶ not (x2 x9 x10 x13 x14) ⟶ not (x2 x11 x12 x13 x14) ⟶ ∀ x15 : ο . (∀ x16 . x0 x16 ⟶ ∀ x17 . x0 x17 ⟶ ∀ x18 . x0 x18 ⟶ ∀ x19 . x0 x19 ⟶ ∀ x20 . x0 x20 ⟶ ∀ x21 . x0 x21 ⟶ ∀ x22 . x0 x22 ⟶ ∀ x23 . x0 x23 ⟶ ∀ x24 . x0 x24 ⟶ ∀ x25 . x0 x25 ⟶ ∀ x26 . x0 x26 ⟶ ∀ x27 . x0 x27 ⟶ x1 x16 x17 x18 x19 ⟶ x1 x18 x19 x20 x21 ⟶ x1 x20 x21 x22 x23 ⟶ x1 x22 x23 x24 x25 ⟶ x1 x24 x25 x26 x27 ⟶ not (x2 x16 x17 x18 x19) ⟶ not (x2 x16 x17 x20 x21) ⟶ not (x2 x16 x17 x22 x23) ⟶ not (x2 x16 x17 x24 x25) ⟶ not (x2 x16 x17 x26 x27) ⟶ not (x2 x18 x19 x20 x21) ⟶ not (x2 x18 x19 x22 x23) ⟶ not (x2 x18 x19 x24 x25) ⟶ not (x2 x18 x19 x26 x27) ⟶ not (x2 x20 x21 x22 x23) ⟶ not (x2 x20 x21 x24 x25) ⟶ not (x2 x20 x21 x26 x27) ⟶ not (x2 x22 x23 x24 x25) ⟶ not (x2 x22 x23 x26 x27) ⟶ not (x2 x24 x25 x26 x27) ⟶ (∀ x28 : ο . (x16 = x3 ⟶ x17 = x4 ⟶ x18 = x5 ⟶ x19 = x6 ⟶ x28) ⟶ (x16 = x3 ⟶ x17 = x4 ⟶ x20 = x5 ⟶ x21 = x6 ⟶ x28) ⟶ (x16 = x3 ⟶ x17 = x4 ⟶ x22 = x5 ⟶ x23 = x6 ⟶ x28) ⟶ (x16 = x3 ⟶ x17 = x4 ⟶ x24 = x5 ⟶ x25 = x6 ⟶ x28) ⟶ (x16 = x3 ⟶ x17 = x4 ⟶ x26 = x5 ⟶ x27 = x6 ⟶ x28) ⟶ (x18 = x3 ⟶ x19 = x4 ⟶ x16 = x5 ⟶ x17 = x6 ⟶ x28) ⟶ (x18 = x3 ⟶ x19 = x4 ⟶ x20 = x5 ⟶ x21 = x6 ⟶ x28) ⟶ (x18 = x3 ⟶ x19 = x4 ⟶ x22 = x5 ⟶ x23 = x6 ⟶ x28) ⟶ (x18 = x3 ⟶ x19 = x4 ⟶ x24 = x5 ⟶ x25 = x6 ⟶ x28) ⟶ (x18 = x3 ⟶ x19 = x4 ⟶ x26 = x5 ⟶ x27 = x6 ⟶ x28) ⟶ (x20 = x3 ⟶ x21 = x4 ⟶ x16 = x5 ⟶ x17 = x6 ⟶ x28) ⟶ (x20 = x3 ⟶ x21 = x4 ⟶ x18 = x5 ⟶ x19 = x6 ⟶ x28) ⟶ (x20 = x3 ⟶ x21 = x4 ⟶ x22 = x5 ⟶ x23 = x6 ⟶ x28) ⟶ (x20 = x3 ⟶ x21 = x4 ⟶ x24 = x5 ⟶ x25 = x6 ⟶ x28) ⟶ (x20 = x3 ⟶ x21 = x4 ⟶ x26 = x5 ⟶ x27 = x6 ⟶ x28) ⟶ (x22 = x3 ⟶ x23 = x4 ⟶ x16 = x5 ⟶ x17 = x6 ⟶ x28) ⟶ (x22 = x3 ⟶ x23 = x4 ⟶ x18 = x5 ⟶ x19 = x6 ⟶ x28) ⟶ (x22 = x3 ⟶ x23 = x4 ⟶ x20 = x5 ⟶ x21 = x6 ⟶ x28) ⟶ (x22 = x3 ⟶ x23 = x4 ⟶ x24 = x5 ⟶ x25 = x6 ⟶ x28) ⟶ (x22 = x3 ⟶ x23 = x4 ⟶ x26 = x5 ⟶ x27 = x6 ⟶ x28) ⟶ (x24 = x3 ⟶ x25 = x4 ⟶ x16 = x5 ⟶ x17 = x6 ⟶ x28) ⟶ (x24 = x3 ⟶ x25 = x4 ⟶ x18 = x5 ⟶ x19 = x6 ⟶ x28) ⟶ (x24 = x3 ⟶ x25 = x4 ⟶ x20 = x5 ⟶ x21 = x6 ⟶ x28) ⟶ (x24 = x3 ⟶ x25 = x4 ⟶ x22 = x5 ⟶ x23 = x6 ⟶ x28) ⟶ (x24 = x3 ⟶ x25 = x4 ⟶ x26 = x5 ⟶ x27 = x6 ⟶ x28) ⟶ (x26 = x3 ⟶ x27 = x4 ⟶ x16 = x5 ⟶ x17 = x6 ⟶ x28) ⟶ (x26 = x3 ⟶ x27 = x4 ⟶ x18 = x5 ⟶ x19 = x6 ⟶ x28) ⟶ (x26 = x3 ⟶ x27 = x4 ⟶ x20 = x5 ⟶ x21 = x6 ⟶ x28) ⟶ (x26 = x3 ⟶ x27 = x4 ⟶ x22 = x5 ⟶ x23 = x6 ⟶ x28) ⟶ (x26 = x3 ⟶ x27 = x4 ⟶ x24 = x5 ⟶ x25 = x6 ⟶ x28) ⟶ x28) ⟶ x15) ⟶ x15 (proof)Theorem 16baa.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι → ι → ο . (∀ x3 x4 x5 x6 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ ∀ x7 : ο . (x1 x3 x4 x5 x6 ⟶ x7) ⟶ (x2 x3 x4 x5 x6 ⟶ x7) ⟶ (x1 x5 x6 x3 x4 ⟶ x7) ⟶ x7) ⟶ (∀ x3 x4 x5 x6 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x2 x3 x4 x5 x6 ⟶ x2 x5 x6 x3 x4) ⟶ ∀ x3 . x0 x3 ⟶ ∀ x4 . x0 x4 ⟶ ∀ x5 . x0 x5 ⟶ ∀ x6 . x0 x6 ⟶ ∀ x7 . x0 x7 ⟶ ∀ x8 . x0 x8 ⟶ ∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ ∀ x11 . x0 x11 ⟶ ∀ x12 . x0 x12 ⟶ ∀ x13 . x0 x13 ⟶ ∀ x14 . x0 x14 ⟶ not (x2 x3 x4 x5 x6) ⟶ not (x2 x3 x4 x7 x8) ⟶ not (x2 x3 x4 x9 x10) ⟶ not (x2 x3 x4 x11 x12) ⟶ not (x2 x3 x4 x13 x14) ⟶ not (x2 x5 x6 x7 x8) ⟶ not (x2 x5 x6 x9 x10) ⟶ not (x2 x5 x6 x11 x12) ⟶ not (x2 x5 x6 x13 x14) ⟶ not (x2 x7 x8 x9 x10) ⟶ not (x2 x7 x8 x11 x12) ⟶ not (x2 x7 x8 x13 x14) ⟶ not (x2 x9 x10 x11 x12) ⟶ not (x2 x9 x10 x13 x14) ⟶ not (x2 x11 x12 x13 x14) ⟶ ∀ x15 : ο . (∀ x16 . x0 x16 ⟶ ∀ x17 . x0 x17 ⟶ ∀ x18 . x0 x18 ⟶ ∀ x19 . x0 x19 ⟶ ∀ x20 . x0 x20 ⟶ ∀ x21 . x0 x21 ⟶ ∀ x22 . x0 x22 ⟶ ∀ x23 . x0 x23 ⟶ ∀ x24 . x0 x24 ⟶ ∀ x25 . x0 x25 ⟶ ∀ x26 . x0 x26 ⟶ ∀ x27 . x0 x27 ⟶ x1 x16 x17 x18 x19 ⟶ x1 x18 x19 x20 x21 ⟶ x1 x20 x21 x22 x23 ⟶ x1 x22 x23 x24 x25 ⟶ x1 x24 x25 x26 x27 ⟶ not (x2 x16 x17 x18 x19) ⟶ not (x2 x16 x17 x20 x21) ⟶ not (x2 x16 x17 x22 x23) ⟶ not (x2 x16 x17 x24 x25) ⟶ not (x2 x16 x17 x26 x27) ⟶ not (x2 x18 x19 x20 x21) ⟶ not (x2 x18 x19 x22 x23) ⟶ not (x2 x18 x19 x24 x25) ⟶ not (x2 x18 x19 x26 x27) ⟶ not (x2 x20 x21 x22 x23) ⟶ not (x2 x20 x21 x24 x25) ⟶ not (x2 x20 x21 x26 x27) ⟶ not (x2 x22 x23 x24 x25) ⟶ not (x2 x22 x23 x26 x27) ⟶ not (x2 x24 x25 x26 x27) ⟶ (∀ x28 : ο . (x16 = x3 ⟶ x17 = x4 ⟶ x28) ⟶ (x18 = x3 ⟶ x19 = x4 ⟶ x28) ⟶ (x20 = x3 ⟶ x21 = x4 ⟶ x28) ⟶ (x22 = x3 ⟶ x23 = x4 ⟶ x28) ⟶ (x24 = x3 ⟶ x25 = x4 ⟶ x28) ⟶ (x26 = x3 ⟶ x27 = x4 ⟶ x28) ⟶ x28) ⟶ x15) ⟶ x15 (proof)
|
|