Search for blocks/addresses/...
Proofgold Asset
asset id
0018b1beed025c8f1e40268977468110ac850759e42f306058f197c3b53b990b
asset hash
99910c1dd3943fe5e02ad4a23189d8bf1b81f382f7d602f91185a9382619041d
bday / block
28532
tx
8dbba..
preasset
doc published by
PrQUS..
Param
mul_OSNo
mul_OSNo
:
ι
→
ι
→
ι
Param
Complex_i
Complex_i
:
ι
Param
Quaternion_j
Quaternion_j
:
ι
Param
Quaternion_k
Quaternion_k
:
ι
Param
OSNo
OSNo
:
ι
→
ο
Param
OSNo_proj0
OSNo_proj0
:
ι
→
ι
Param
OSNo_proj1
OSNo_proj1
:
ι
→
ι
Known
OSNo_proj0proj1_split
OSNo_proj0proj1_split
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo_proj0
x0
=
OSNo_proj0
x1
⟶
OSNo_proj1
x0
=
OSNo_proj1
x1
⟶
x0
=
x1
Known
OSNo_p0_k
OSNo_p0_k
:
OSNo_proj0
Quaternion_k
=
Quaternion_k
Param
add_HSNo
add_HSNo
:
ι
→
ι
→
ι
Param
mul_HSNo
mul_HSNo
:
ι
→
ι
→
ι
Param
minus_HSNo
minus_HSNo
:
ι
→
ι
Param
conj_HSNo
conj_HSNo
:
ι
→
ι
Known
mul_OSNo_proj0
mul_OSNo_proj0
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo_proj0
(
mul_OSNo
x0
x1
)
=
add_HSNo
(
mul_HSNo
(
OSNo_proj0
x0
)
(
OSNo_proj0
x1
)
)
(
minus_HSNo
(
mul_HSNo
(
conj_HSNo
(
OSNo_proj1
x1
)
)
(
OSNo_proj1
x0
)
)
)
Known
OSNo_p0_i
OSNo_p0_i
:
OSNo_proj0
Complex_i
=
Complex_i
Known
OSNo_p1_i
OSNo_p1_i
:
OSNo_proj1
Complex_i
=
0
Known
OSNo_p0_j
OSNo_p0_j
:
OSNo_proj0
Quaternion_j
=
Quaternion_j
Known
OSNo_p1_j
OSNo_p1_j
:
OSNo_proj1
Quaternion_j
=
0
Param
SNo
SNo
:
ι
→
ο
Known
conj_HSNo_id_SNo
conj_HSNo_id_SNo
:
∀ x0 .
SNo
x0
⟶
conj_HSNo
x0
=
x0
Known
SNo_0
SNo_0
:
SNo
0
Param
HSNo
HSNo
:
ι
→
ο
Known
mul_HSNo_0R
mul_HSNo_0R
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
x0
0
=
0
Known
HSNo_0
HSNo_0
:
HSNo
0
Known
minus_HSNo_0
minus_HSNo_0
:
minus_HSNo
0
=
0
Known
add_HSNo_0R
add_HSNo_0R
:
∀ x0 .
HSNo
x0
⟶
add_HSNo
x0
0
=
x0
Known
HSNo_mul_HSNo
HSNo_mul_HSNo
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
HSNo
(
mul_HSNo
x0
x1
)
Known
HSNo_Complex_i
HSNo_Complex_i
:
HSNo
Complex_i
Known
HSNo_Quaternion_j
HSNo_Quaternion_j
:
HSNo
Quaternion_j
Known
Quaternion_i_j
Quaternion_i_j
:
mul_HSNo
Complex_i
Quaternion_j
=
Quaternion_k
Known
OSNo_p1_k
OSNo_p1_k
:
OSNo_proj1
Quaternion_k
=
0
Known
mul_OSNo_proj1
mul_OSNo_proj1
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo_proj1
(
mul_OSNo
x0
x1
)
=
add_HSNo
(
mul_HSNo
(
OSNo_proj1
x1
)
(
OSNo_proj0
x0
)
)
(
mul_HSNo
(
OSNo_proj1
x0
)
(
conj_HSNo
(
OSNo_proj0
x1
)
)
)
Known
mul_HSNo_0L
mul_HSNo_0L
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
0
x0
=
0
Known
HSNo_conj_HSNo
HSNo_conj_HSNo
:
∀ x0 .
HSNo
x0
⟶
HSNo
(
conj_HSNo
x0
)
Known
add_HSNo_0L
add_HSNo_0L
:
∀ x0 .
HSNo
x0
⟶
add_HSNo
0
x0
=
x0
Known
OSNo_mul_OSNo
OSNo_mul_OSNo
:
∀ x0 x1 .
OSNo
x0
⟶
OSNo
x1
⟶
OSNo
(
mul_OSNo
x0
x1
)
Known
OSNo_Quaternion_k
OSNo_Quaternion_k
:
OSNo
Quaternion_k
Known
OSNo_Quaternion_j
OSNo_Quaternion_j
:
OSNo
Quaternion_j
Known
OSNo_Complex_i
OSNo_Complex_i
:
OSNo
Complex_i
Theorem
Octonion_i1_i2
Octonion_i1_i2
:
mul_OSNo
Complex_i
Quaternion_j
=
Quaternion_k
(proof)
Param
minus_OSNo
minus_OSNo
:
ι
→
ι
Known
OSNo_minus_OSNo
OSNo_minus_OSNo
:
∀ x0 .
OSNo
x0
⟶
OSNo
(
minus_OSNo
x0
)
Known
minus_OSNo_proj0
minus_OSNo_proj0
:
∀ x0 .
OSNo
x0
⟶
OSNo_proj0
(
minus_OSNo
x0
)
=
minus_HSNo
(
OSNo_proj0
x0
)
Known
Quaternion_j_i
Quaternion_j_i
:
mul_HSNo
Quaternion_j
Complex_i
=
minus_HSNo
Quaternion_k
Known
minus_OSNo_proj1
minus_OSNo_proj1
:
∀ x0 .
OSNo
x0
⟶
OSNo_proj1
(
minus_OSNo
x0
)
=
minus_HSNo
(
OSNo_proj1
x0
)
Theorem
Octonion_i2_i1
Octonion_i2_i1
:
mul_OSNo
Quaternion_j
Complex_i
=
minus_OSNo
Quaternion_k
(proof)
Known
HSNo_Quaternion_k
HSNo_Quaternion_k
:
HSNo
Quaternion_k
Known
Quaternion_j_k
Quaternion_j_k
:
mul_HSNo
Quaternion_j
Quaternion_k
=
Complex_i
Theorem
Octonion_i2_i4
Octonion_i2_i4
:
mul_OSNo
Quaternion_j
Quaternion_k
=
Complex_i
(proof)
Known
Quaternion_k_j
Quaternion_k_j
:
mul_HSNo
Quaternion_k
Quaternion_j
=
minus_HSNo
Complex_i
Theorem
Octonion_i4_i2
Octonion_i4_i2
:
mul_OSNo
Quaternion_k
Quaternion_j
=
minus_OSNo
Complex_i
(proof)
Known
Quaternion_k_i
Quaternion_k_i
:
mul_HSNo
Quaternion_k
Complex_i
=
Quaternion_j
Theorem
Octonion_i4_i1
Octonion_i4_i1
:
mul_OSNo
Quaternion_k
Complex_i
=
Quaternion_j
(proof)
Known
Quaternion_i_k
Quaternion_i_k
:
mul_HSNo
Complex_i
Quaternion_k
=
minus_HSNo
Quaternion_j
Theorem
Octonion_i1_i4
Octonion_i1_i4
:
mul_OSNo
Complex_i
Quaternion_k
=
minus_OSNo
Quaternion_j
(proof)
Param
Octonion_i3
Octonion_i3
:
ι
Param
Octonion_i5
Octonion_i5
:
ι
Known
OSNo_p0_i5
OSNo_p0_i5
:
OSNo_proj0
Octonion_i5
=
0
Known
OSNo_p0_i3
OSNo_p0_i3
:
OSNo_proj0
Octonion_i3
=
0
Known
OSNo_p1_i3
OSNo_p1_i3
:
OSNo_proj1
Octonion_i3
=
minus_HSNo
Complex_i
Known
HSNo_minus_HSNo
HSNo_minus_HSNo
:
∀ x0 .
HSNo
x0
⟶
HSNo
(
minus_HSNo
x0
)
Known
OSNo_p1_i5
OSNo_p1_i5
:
OSNo_proj1
Octonion_i5
=
minus_HSNo
Quaternion_k
Known
minus_mul_HSNo_distrL
minus_mul_HSNo_distrL
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
mul_HSNo
(
minus_HSNo
x0
)
x1
=
minus_HSNo
(
mul_HSNo
x0
x1
)
Known
OSNo_Octonion_i5
OSNo_Octonion_i5
:
OSNo
Octonion_i5
Known
OSNo_Octonion_i3
OSNo_Octonion_i3
:
OSNo
Octonion_i3
Theorem
Octonion_i2_i3
Octonion_i2_i3
:
mul_OSNo
Quaternion_j
Octonion_i3
=
Octonion_i5
(proof)
Known
conj_HSNo_j
conj_HSNo_j
:
conj_HSNo
Quaternion_j
=
minus_HSNo
Quaternion_j
Known
minus_mul_HSNo_distrR
minus_mul_HSNo_distrR
:
∀ x0 x1 .
HSNo
x0
⟶
HSNo
x1
⟶
mul_HSNo
x0
(
minus_HSNo
x1
)
=
minus_HSNo
(
mul_HSNo
x0
x1
)
Known
minus_HSNo_invol
minus_HSNo_invol
:
∀ x0 .
HSNo
x0
⟶
minus_HSNo
(
minus_HSNo
x0
)
=
x0
Theorem
Octonion_i3_i2
Octonion_i3_i2
:
mul_OSNo
Octonion_i3
Quaternion_j
=
minus_OSNo
Octonion_i5
(proof)
Known
conj_minus_HSNo
conj_minus_HSNo
:
∀ x0 .
HSNo
x0
⟶
conj_HSNo
(
minus_HSNo
x0
)
=
minus_HSNo
(
conj_HSNo
x0
)
Known
conj_HSNo_k
conj_HSNo_k
:
conj_HSNo
Quaternion_k
=
minus_HSNo
Quaternion_k
Theorem
Octonion_i3_i5
Octonion_i3_i5
:
mul_OSNo
Octonion_i3
Octonion_i5
=
Quaternion_j
(proof)
Known
conj_HSNo_i
conj_HSNo_i
:
conj_HSNo
Complex_i
=
minus_HSNo
Complex_i
Theorem
Octonion_i5_i3
Octonion_i5_i3
:
mul_OSNo
Octonion_i5
Octonion_i3
=
minus_OSNo
Quaternion_j
(proof)
Theorem
Octonion_i5_i2
Octonion_i5_i2
:
mul_OSNo
Octonion_i5
Quaternion_j
=
Octonion_i3
(proof)
Theorem
Octonion_i2_i5
Octonion_i2_i5
:
mul_OSNo
Quaternion_j
Octonion_i5
=
minus_OSNo
Octonion_i3
(proof)
Param
Octonion_i6
Octonion_i6
:
ι
Known
OSNo_p0_i6
OSNo_p0_i6
:
OSNo_proj0
Octonion_i6
=
0
Known
OSNo_p1_i6
OSNo_p1_i6
:
OSNo_proj1
Octonion_i6
=
minus_HSNo
Quaternion_j
Known
OSNo_Octonion_i6
OSNo_Octonion_i6
:
OSNo
Octonion_i6
Theorem
Octonion_i3_i4
Octonion_i3_i4
:
mul_OSNo
Octonion_i3
Quaternion_k
=
Octonion_i6
(proof)
Theorem
Octonion_i4_i3
Octonion_i4_i3
:
mul_OSNo
Quaternion_k
Octonion_i3
=
minus_OSNo
Octonion_i6
(proof)
Theorem
Octonion_i4_i6
Octonion_i4_i6
:
mul_OSNo
Quaternion_k
Octonion_i6
=
Octonion_i3
(proof)
Theorem
Octonion_i6_i4
Octonion_i6_i4
:
mul_OSNo
Octonion_i6
Quaternion_k
=
minus_OSNo
Octonion_i3
(proof)
Theorem
Octonion_i6_i3
Octonion_i6_i3
:
mul_OSNo
Octonion_i6
Octonion_i3
=
Quaternion_k
(proof)
Theorem
Octonion_i3_i6
Octonion_i3_i6
:
mul_OSNo
Octonion_i3
Octonion_i6
=
minus_OSNo
Quaternion_k
(proof)
Param
Octonion_i0
Octonion_i0
:
ι
Known
OSNo_p0_i0
OSNo_p0_i0
:
OSNo_proj0
Octonion_i0
=
0
Param
ordsucc
ordsucc
:
ι
→
ι
Known
OSNo_p1_i0
OSNo_p1_i0
:
OSNo_proj1
Octonion_i0
=
1
Known
Quaternion_k_sqr
Quaternion_k_sqr
:
mul_HSNo
Quaternion_k
Quaternion_k
=
minus_HSNo
1
Known
HSNo_1
HSNo_1
:
HSNo
1
Known
OSNo_Octonion_i0
OSNo_Octonion_i0
:
OSNo
Octonion_i0
Theorem
Octonion_i4_i5
Octonion_i4_i5
:
mul_OSNo
Quaternion_k
Octonion_i5
=
Octonion_i0
(proof)
Theorem
Octonion_i5_i4
Octonion_i5_i4
:
mul_OSNo
Octonion_i5
Quaternion_k
=
minus_OSNo
Octonion_i0
(proof)
Known
SNo_1
SNo_1
:
SNo
1
Known
mul_HSNo_1L
mul_HSNo_1L
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
1
x0
=
x0
Theorem
Octonion_i5_i0
Octonion_i5_i0
:
mul_OSNo
Octonion_i5
Octonion_i0
=
Quaternion_k
(proof)
Known
mul_HSNo_1R
mul_HSNo_1R
:
∀ x0 .
HSNo
x0
⟶
mul_HSNo
x0
1
=
x0
Theorem
Octonion_i0_i5
Octonion_i0_i5
:
mul_OSNo
Octonion_i0
Octonion_i5
=
minus_OSNo
Quaternion_k
(proof)
Theorem
Octonion_i0_i4
Octonion_i0_i4
:
mul_OSNo
Octonion_i0
Quaternion_k
=
Octonion_i5
(proof)
Theorem
Octonion_i4_i0
Octonion_i4_i0
:
mul_OSNo
Quaternion_k
Octonion_i0
=
minus_OSNo
Octonion_i5
(proof)
Theorem
Octonion_i5_i6
Octonion_i5_i6
:
mul_OSNo
Octonion_i5
Octonion_i6
=
Complex_i
(proof)
Theorem
Octonion_i6_i5
Octonion_i6_i5
:
mul_OSNo
Octonion_i6
Octonion_i5
=
minus_OSNo
Complex_i
(proof)
Theorem
Octonion_i6_i1
Octonion_i6_i1
:
mul_OSNo
Octonion_i6
Complex_i
=
Octonion_i5
(proof)
Theorem
Octonion_i1_i6
Octonion_i1_i6
:
mul_OSNo
Complex_i
Octonion_i6
=
minus_OSNo
Octonion_i5
(proof)
Theorem
Octonion_i1_i5
Octonion_i1_i5
:
mul_OSNo
Complex_i
Octonion_i5
=
Octonion_i6
(proof)
Theorem
Octonion_i5_i1
Octonion_i5_i1
:
mul_OSNo
Octonion_i5
Complex_i
=
minus_OSNo
Octonion_i6
(proof)
Theorem
Octonion_i6_i0
Octonion_i6_i0
:
mul_OSNo
Octonion_i6
Octonion_i0
=
Quaternion_j
(proof)
Theorem
Octonion_i0_i6
Octonion_i0_i6
:
mul_OSNo
Octonion_i0
Octonion_i6
=
minus_OSNo
Quaternion_j
(proof)
Theorem
Octonion_i0_i2
Octonion_i0_i2
:
mul_OSNo
Octonion_i0
Quaternion_j
=
Octonion_i6
(proof)
Theorem
Octonion_i2_i0
Octonion_i2_i0
:
mul_OSNo
Quaternion_j
Octonion_i0
=
minus_OSNo
Octonion_i6
(proof)
Known
Quaternion_j_sqr
Quaternion_j_sqr
:
mul_HSNo
Quaternion_j
Quaternion_j
=
minus_HSNo
1
Theorem
Octonion_i2_i6
Octonion_i2_i6
:
mul_OSNo
Quaternion_j
Octonion_i6
=
Octonion_i0
(proof)
Theorem
Octonion_i6_i2
Octonion_i6_i2
:
mul_OSNo
Octonion_i6
Quaternion_j
=
minus_OSNo
Octonion_i0
(proof)
Theorem
Octonion_i0_i1
Octonion_i0_i1
:
mul_OSNo
Octonion_i0
Complex_i
=
Octonion_i3
(proof)
Theorem
Octonion_i1_i0
Octonion_i1_i0
:
mul_OSNo
Complex_i
Octonion_i0
=
minus_OSNo
Octonion_i3
(proof)
Known
Quaternion_i_sqr
Quaternion_i_sqr
:
mul_HSNo
Complex_i
Complex_i
=
minus_HSNo
1
Theorem
Octonion_i1_i3
Octonion_i1_i3
:
mul_OSNo
Complex_i
Octonion_i3
=
Octonion_i0
(proof)
Theorem
Octonion_i3_i1
Octonion_i3_i1
:
mul_OSNo
Octonion_i3
Complex_i
=
minus_OSNo
Octonion_i0
(proof)
Theorem
Octonion_i3_i0
Octonion_i3_i0
:
mul_OSNo
Octonion_i3
Octonion_i0
=
Complex_i
(proof)
Theorem
Octonion_i0_i3
Octonion_i0_i3
:
mul_OSNo
Octonion_i0
Octonion_i3
=
minus_OSNo
Complex_i
(proof)