Search for blocks/addresses/...
Proofgold Asset
asset id
bfadb8e7a58cbbc547d7a4252957e0bc3aa91da6245ad1bf63e64597fd95e4d7
asset hash
03df9f74d1cfb7b1133dbbcfc077c6df31899f55508e25dc7c3a5e5e303c6d3b
bday / block
48180
tx
07da3..
preasset
doc published by
PrGM6..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
pred_ext_2
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
bc9f8..
:
∀ x0 :
ι →
ι → ο
.
(
λ x2 x3 .
not
(
not
(
x0
x2
x3
)
)
)
=
x0
...
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
00e19..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
u7
:
ι
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Definition
86ec2..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
4402e..
x0
(
λ x2 x3 .
not
(
x1
x2
x3
)
)
Definition
cdfa5..
:=
λ x0 x1 .
λ x2 :
ι →
ι → ο
.
∀ x3 .
x3
⊆
x1
⟶
atleastp
x0
x3
⟶
not
(
∀ x4 .
x4
∈
x3
⟶
∀ x5 .
x5
∈
x3
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x2
x4
x5
)
Param
u4
:
ι
Definition
86706..
:=
cdfa5..
u4
Definition
35fb6..
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
86706..
x0
(
λ x2 x3 .
not
(
x1
x2
x3
)
)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Param
6648a..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
c9184..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
6648a..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Param
e7595..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
88b7c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
81638..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
70d65..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
843b8..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Param
2452c..
:
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ο
Definition
df271..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
6648a..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
x0
x6
x7
⟶
x8
)
⟶
x8
Definition
836ee..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
6648a..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
x0
x5
x7
⟶
x0
x6
x7
⟶
x8
)
⟶
x8
Known
e5914..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
atleastp
u7
x0
⟶
4402e..
x0
x1
⟶
35fb6..
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
c9184..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
e7595..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
88b7c..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
81638..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
70d65..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
843b8..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
2452c..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
df271..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
836ee..
x1
x3
x4
x5
x6
x7
x8
x9
⟶
x2
)
⟶
x2
Known
917b0..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
(
∀ x14 .
x14
∈
x1
⟶
∀ x15 .
x15
∈
x1
⟶
x0
x14
x15
⟶
x0
x15
x14
)
⟶
(
x2
=
x8
⟶
∀ x14 : ο .
x14
)
⟶
(
x3
=
x8
⟶
∀ x14 : ο .
x14
)
⟶
(
x4
=
x8
⟶
∀ x14 : ο .
x14
)
⟶
(
x5
=
x8
⟶
∀ x14 : ο .
x14
)
⟶
(
x6
=
x8
⟶
∀ x14 : ο .
x14
)
⟶
(
x7
=
x8
⟶
∀ x14 : ο .
x14
)
⟶
(
x2
=
x9
⟶
∀ x14 : ο .
x14
)
⟶
(
x3
=
x9
⟶
∀ x14 : ο .
x14
)
⟶
(
x4
=
x9
⟶
∀ x14 : ο .
x14
)
⟶
(
x5
=
x9
⟶
∀ x14 : ο .
x14
)
⟶
(
x6
=
x9
⟶
∀ x14 : ο .
x14
)
⟶
(
x7
=
x9
⟶
∀ x14 : ο .
x14
)
⟶
(
x2
=
x10
⟶
∀ x14 : ο .
x14
)
⟶
(
x3
=
x10
⟶
∀ x14 : ο .
x14
)
⟶
(
x4
=
x10
⟶
∀ x14 : ο .
x14
)
⟶
(
x5
=
x10
⟶
∀ x14 : ο .
x14
)
⟶
(
x6
=
x10
⟶
∀ x14 : ο .
x14
)
⟶
(
x7
=
x10
⟶
∀ x14 : ο .
x14
)
⟶
(
x2
=
x11
⟶
∀ x14 : ο .
x14
)
⟶
(
x3
=
x11
⟶
∀ x14 : ο .
x14
)
⟶
(
x4
=
x11
⟶
∀ x14 : ο .
x14
)
⟶
(
x5
=
x11
⟶
∀ x14 : ο .
x14
)
⟶
(
x6
=
x11
⟶
∀ x14 : ο .
x14
)
⟶
(
x7
=
x11
⟶
∀ x14 : ο .
x14
)
⟶
(
x2
=
x12
⟶
∀ x14 : ο .
x14
)
⟶
(
x3
=
x12
⟶
∀ x14 : ο .
x14
)
⟶
(
x4
=
x12
⟶
∀ x14 : ο .
x14
)
⟶
(
x5
=
x12
⟶
∀ x14 : ο .
x14
)
⟶
(
x6
=
x12
⟶
∀ x14 : ο .
x14
)
⟶
(
x7
=
x12
⟶
∀ x14 : ο .
x14
)
⟶
(
x2
=
x13
⟶
∀ x14 : ο .
x14
)
⟶
(
x3
=
x13
⟶
∀ x14 : ο .
x14
)
⟶
(
x4
=
x13
⟶
∀ x14 : ο .
x14
)
⟶
(
x5
=
x13
⟶
∀ x14 : ο .
x14
)
⟶
(
x6
=
x13
⟶
∀ x14 : ο .
x14
)
⟶
(
x7
=
x13
⟶
∀ x14 : ο .
x14
)
⟶
00e19..
x0
x2
x3
x4
x5
x6
x7
⟶
6648a..
(
λ x14 x15 .
not
(
x0
x14
x15
)
)
x8
x9
x10
x11
x12
x13
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
False
Known
1c304..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
(
∀ x15 .
x15
∈
x1
⟶
∀ x16 .
x16
∈
x1
⟶
x0
x15
x16
⟶
x0
x16
x15
)
⟶
(
x2
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
00e19..
x0
x2
x3
x4
x5
x6
x7
⟶
e7595..
(
λ x15 x16 .
not
(
x0
x15
x16
)
)
x8
x9
x10
x11
x12
x13
x14
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
False
Known
15c2f..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
(
∀ x15 .
x15
∈
x1
⟶
∀ x16 .
x16
∈
x1
⟶
x0
x15
x16
⟶
x0
x16
x15
)
⟶
(
x2
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
00e19..
x0
x2
x3
x4
x5
x6
x7
⟶
88b7c..
(
λ x15 x16 .
not
(
x0
x15
x16
)
)
x8
x9
x10
x11
x12
x13
x14
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
False
Known
1e702..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
(
∀ x15 .
x15
∈
x1
⟶
∀ x16 .
x16
∈
x1
⟶
x0
x15
x16
⟶
x0
x16
x15
)
⟶
(
x2
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
00e19..
x0
x2
x3
x4
x5
x6
x7
⟶
81638..
(
λ x15 x16 .
not
(
x0
x15
x16
)
)
x8
x9
x10
x11
x12
x13
x14
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
False
Known
06402..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
(
∀ x15 .
x15
∈
x1
⟶
∀ x16 .
x16
∈
x1
⟶
x0
x15
x16
⟶
x0
x16
x15
)
⟶
(
x2
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
00e19..
x0
x2
x3
x4
x5
x6
x7
⟶
70d65..
(
λ x15 x16 .
not
(
x0
x15
x16
)
)
x8
x9
x10
x11
x12
x13
x14
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
False
Known
c62c7..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
(
∀ x15 .
x15
∈
x1
⟶
∀ x16 .
x16
∈
x1
⟶
x0
x15
x16
⟶
x0
x16
x15
)
⟶
(
x2
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
00e19..
x0
x2
x3
x4
x5
x6
x7
⟶
843b8..
(
λ x15 x16 .
not
(
x0
x15
x16
)
)
x8
x9
x10
x11
x12
x13
x14
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
False
Known
659aa..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
∀ x10 .
x10
∈
x1
⟶
∀ x11 .
x11
∈
x1
⟶
∀ x12 .
x12
∈
x1
⟶
∀ x13 .
x13
∈
x1
⟶
∀ x14 .
x14
∈
x1
⟶
(
∀ x15 .
x15
∈
x1
⟶
∀ x16 .
x16
∈
x1
⟶
x0
x15
x16
⟶
x0
x16
x15
)
⟶
(
x2
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x8
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x9
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x10
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x11
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x12
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x13
⟶
∀ x15 : ο .
x15
)
⟶
(
x2
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x3
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x4
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x5
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x6
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
(
x7
=
x14
⟶
∀ x15 : ο .
x15
)
⟶
00e19..
x0
x2
x3
x4
x5
x6
x7
⟶
2452c..
(
λ x15 x16 .
not
(
x0
x15
x16
)
)
x8
x9
x10
x11
x12
x13
x14
⟶
86706..
x1
x0
⟶
35fb6..
x1
x0
⟶
False
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Theorem
aed72..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x1
⊆
x2
⟶
∀ x3 .
x3
∈
setminus
x2
x1
⟶
∀ x4 .
x4
∈
setminus
x2
x1
⟶
∀ x5 .
x5
∈
setminus
x2
x1
⟶
∀ x6 .
x6
∈
setminus
x2
x1
⟶
∀ x7 .
x7
∈
setminus
x2
x1
⟶
∀ x8 .
x8
∈
setminus
x2
x1
⟶
(
∀ x9 .
x9
∈
x2
⟶
∀ x10 .
x10
∈
x2
⟶
x0
x9
x10
⟶
x0
x10
x9
)
⟶
00e19..
x0
x3
x4
x5
x6
x7
x8
⟶
atleastp
u7
x1
⟶
86ec2..
x1
x0
⟶
86706..
x2
x0
⟶
35fb6..
x2
x0
⟶
False
...