Search for blocks/addresses/...

Proofgold Asset

asset id
7d949246aff8146cb480250fc74a91aeb894642122cfaa31b8b70073c6428468
asset hash
04fedb19ebf0218366b03270cce959ad4e3c555fc05e222b4c78e274a82a8a52
bday / block
2897
tx
077a2..
preasset
doc published by PrGxv..
Param 0fc90.. : ι(ιι) → ι
Param 4ae4a.. : ιι
Param 4a7ef.. : ι
Param If_i : οιιι
Param d2155.. : ι(ιιο) → ι
Param 1216a.. : ι(ιο) → ι
Definition c7d1f.. := λ x0 . λ x1 : ι → ι . λ x2 : ι → ι → ο . λ x3 : ι → ο . λ x4 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (0fc90.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (d2155.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (1216a.. x0 x3) x4))))
Param f482f.. : ιιι
Known 7d2e2.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) 4a7ef.. = x0
Theorem 1c95b.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . x0 = c7d1f.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem e05f5.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ο . ∀ x4 . x0 = f482f.. (c7d1f.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Known 504a8.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. 4a7ef..) = x1
Known f22ec.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 x0f482f.. (0fc90.. x0 x1) x2 = x1 x2
Theorem 4a2a6.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . x0 = c7d1f.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x2 x6 = f482f.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 (proof)
Theorem be277.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ο . ∀ x4 x5 . prim1 x5 x0x1 x5 = f482f.. (f482f.. (c7d1f.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 (proof)
Param 2b2e3.. : ιιιο
Known fb20c.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. 4a7ef..)) = x2
Known 67416.. : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x02b2e3.. (d2155.. x0 x1) x2 x3 = x1 x2 x3
Theorem 73165.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . x0 = c7d1f.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x3 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 x7 (proof)
Theorem c5a21.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ο . ∀ x4 x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x2 x5 x6 = 2b2e3.. (f482f.. (c7d1f.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Param decode_p : ιιο
Known 431f3.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = x3
Known 931fe.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 x0decode_p (1216a.. x0 x1) x2 = x1 x2
Theorem 26d45.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . x0 = c7d1f.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x4 x6 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6 (proof)
Theorem 1f38c.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ο . ∀ x4 x5 . prim1 x5 x0x3 x5 = decode_p (f482f.. (c7d1f.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 (proof)
Known ffdcd.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = x4
Theorem bd863.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . x0 = c7d1f.. x1 x2 x3 x4 x5x5 = f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem 9cd02.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ο . ∀ x4 . x4 = f482f.. (c7d1f.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known and5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Theorem 56b30.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ο . ∀ x6 x7 : ι → ο . ∀ x8 x9 . c7d1f.. x0 x2 x4 x6 x8 = c7d1f.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0x2 x10 = x3 x10)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11)) (∀ x10 . prim1 x10 x0x6 x10 = x7 x10)) (x8 = x9) (proof)
Param iff : οοο
Known ee7ef.. : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . prim1 x3 x0iff (x1 x3) (x2 x3))1216a.. x0 x1 = 1216a.. x0 x2
Known 62ef7.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0iff (x1 x3 x4) (x2 x3 x4))d2155.. x0 x1 = d2155.. x0 x2
Known 4402a.. : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . prim1 x3 x0x1 x3 = x2 x3)0fc90.. x0 x1 = 0fc90.. x0 x2
Theorem fe636.. : ∀ x0 . ∀ x1 x2 : ι → ι . ∀ x3 x4 : ι → ι → ο . ∀ x5 x6 : ι → ο . ∀ x7 . (∀ x8 . prim1 x8 x0x1 x8 = x2 x8)(∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0iff (x3 x8 x9) (x4 x8 x9))(∀ x8 . prim1 x8 x0iff (x5 x8) (x6 x8))c7d1f.. x0 x1 x3 x5 x7 = c7d1f.. x0 x2 x4 x6 x7 (proof)
Definition b610d.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . prim1 x4 x2prim1 (x3 x4) x2)∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . ∀ x6 . prim1 x6 x2x1 (c7d1f.. x2 x3 x4 x5 x6))x1 x0
Theorem f2018.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . prim1 x2 x0prim1 (x1 x2) x0)∀ x2 : ι → ι → ο . ∀ x3 : ι → ο . ∀ x4 . prim1 x4 x0b610d.. (c7d1f.. x0 x1 x2 x3 x4) (proof)
Theorem c30a4.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ο . ∀ x4 . b610d.. (c7d1f.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x1 x5) x0 (proof)
Theorem cb18b.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 : ι → ο . ∀ x4 . b610d.. (c7d1f.. x0 x1 x2 x3 x4)prim1 x4 x0 (proof)
Known iff_refl : ∀ x0 : ο . iff x0 x0
Theorem 7c672.. : ∀ x0 . b610d.. x0x0 = c7d1f.. (f482f.. x0 4a7ef..) (f482f.. (f482f.. x0 (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (proof)
Definition ec111.. := λ x0 . λ x1 : ι → (ι → ι)(ι → ι → ο)(ι → ο)ι → ι . x1 (f482f.. x0 4a7ef..) (f482f.. (f482f.. x0 (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 2f87c.. : ∀ x0 : ι → (ι → ι)(ι → ι → ο)(ι → ο)ι → ι . ∀ x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . (∀ x6 : ι → ι . (∀ x7 . prim1 x7 x1x2 x7 = x6 x7)∀ x7 : ι → ι → ο . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1iff (x3 x8 x9) (x7 x8 x9))∀ x8 : ι → ο . (∀ x9 . prim1 x9 x1iff (x4 x9) (x8 x9))x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5)ec111.. (c7d1f.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 32c7c.. := λ x0 . λ x1 : ι → (ι → ι)(ι → ι → ο)(ι → ο)ι → ο . x1 (f482f.. x0 4a7ef..) (f482f.. (f482f.. x0 (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem b2ef3.. : ∀ x0 : ι → (ι → ι)(ι → ι → ο)(ι → ο)ι → ο . ∀ x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . (∀ x6 : ι → ι . (∀ x7 . prim1 x7 x1x2 x7 = x6 x7)∀ x7 : ι → ι → ο . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1iff (x3 x8 x9) (x7 x8 x9))∀ x8 : ι → ο . (∀ x9 . prim1 x9 x1iff (x4 x9) (x8 x9))x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5)32c7c.. (c7d1f.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition bd517.. := λ x0 . λ x1 : ι → ι . λ x2 : ι → ι → ο . λ x3 x4 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (0fc90.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (d2155.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))
Theorem 0b229.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . x0 = bd517.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem 77703.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 . x0 = f482f.. (bd517.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Theorem c7fd3.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . x0 = bd517.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x2 x6 = f482f.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 (proof)
Theorem 8cd35.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 x5 . prim1 x5 x0x1 x5 = f482f.. (f482f.. (bd517.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 (proof)
Theorem 1348b.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . x0 = bd517.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x3 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 x7 (proof)
Theorem 71c9c.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x2 x5 x6 = 2b2e3.. (f482f.. (bd517.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Theorem 4c95d.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . x0 = bd517.. x1 x2 x3 x4 x5x4 = f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (proof)
Theorem 0f14e.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 . x3 = f482f.. (bd517.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (proof)
Theorem 71b43.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . x0 = bd517.. x1 x2 x3 x4 x5x5 = f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem c5ea1.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 . x4 = f482f.. (bd517.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem cdba3.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ι → ο . ∀ x6 x7 x8 x9 . bd517.. x0 x2 x4 x6 x8 = bd517.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0x2 x10 = x3 x10)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11)) (x6 = x7)) (x8 = x9) (proof)
Theorem 1fd36.. : ∀ x0 . ∀ x1 x2 : ι → ι . ∀ x3 x4 : ι → ι → ο . ∀ x5 x6 . (∀ x7 . prim1 x7 x0x1 x7 = x2 x7)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0iff (x3 x7 x8) (x4 x7 x8))bd517.. x0 x1 x3 x5 x6 = bd517.. x0 x2 x4 x5 x6 (proof)
Definition 4b311.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . prim1 x4 x2prim1 (x3 x4) x2)∀ x4 : ι → ι → ο . ∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2x1 (bd517.. x2 x3 x4 x5 x6))x1 x0
Theorem a0b68.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . prim1 x2 x0prim1 (x1 x2) x0)∀ x2 : ι → ι → ο . ∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x04b311.. (bd517.. x0 x1 x2 x3 x4) (proof)
Theorem ea18c.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 . 4b311.. (bd517.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x1 x5) x0 (proof)
Theorem 29640.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 . 4b311.. (bd517.. x0 x1 x2 x3 x4)prim1 x3 x0 (proof)
Theorem b4986.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ι → ο . ∀ x3 x4 . 4b311.. (bd517.. x0 x1 x2 x3 x4)prim1 x4 x0 (proof)
Theorem c03b4.. : ∀ x0 . 4b311.. x0x0 = bd517.. (f482f.. x0 4a7ef..) (f482f.. (f482f.. x0 (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (proof)
Definition ce9f4.. := λ x0 . λ x1 : ι → (ι → ι)(ι → ι → ο)ι → ι → ι . x1 (f482f.. x0 4a7ef..) (f482f.. (f482f.. x0 (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 7b9b4.. : ∀ x0 : ι → (ι → ι)(ι → ι → ο)ι → ι → ι . ∀ x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . (∀ x6 : ι → ι . (∀ x7 . prim1 x7 x1x2 x7 = x6 x7)∀ x7 : ι → ι → ο . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1iff (x3 x8 x9) (x7 x8 x9))x0 x1 x6 x7 x4 x5 = x0 x1 x2 x3 x4 x5)ce9f4.. (bd517.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 50937.. := λ x0 . λ x1 : ι → (ι → ι)(ι → ι → ο)ι → ι → ο . x1 (f482f.. x0 4a7ef..) (f482f.. (f482f.. x0 (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 49059.. : ∀ x0 : ι → (ι → ι)(ι → ι → ο)ι → ι → ο . ∀ x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . (∀ x6 : ι → ι . (∀ x7 . prim1 x7 x1x2 x7 = x6 x7)∀ x7 : ι → ι → ο . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1iff (x3 x8 x9) (x7 x8 x9))x0 x1 x6 x7 x4 x5 = x0 x1 x2 x3 x4 x5)50937.. (bd517.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 726e4.. := λ x0 . λ x1 : ι → ι . λ x2 : ι → ο . λ x3 x4 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (0fc90.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (1216a.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))
Theorem 9205a.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 x5 . x0 = 726e4.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem e2946.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ο . ∀ x3 x4 . x0 = f482f.. (726e4.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Theorem 90bdf.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 x5 . x0 = 726e4.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x2 x6 = f482f.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 (proof)
Theorem 44359.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ο . ∀ x3 x4 x5 . prim1 x5 x0x1 x5 = f482f.. (f482f.. (726e4.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 (proof)
Theorem 54141.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 x5 . x0 = 726e4.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x3 x6 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 (proof)
Theorem 62515.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ο . ∀ x3 x4 x5 . prim1 x5 x0x2 x5 = decode_p (f482f.. (726e4.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 (proof)
Theorem 30331.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 x5 . x0 = 726e4.. x1 x2 x3 x4 x5x4 = f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (proof)
Theorem 1741e.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ο . ∀ x3 x4 . x3 = f482f.. (726e4.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (proof)
Theorem 5c572.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 x5 . x0 = 726e4.. x1 x2 x3 x4 x5x5 = f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem fa56b.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ο . ∀ x3 x4 . x4 = f482f.. (726e4.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem 9df7f.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 x5 : ι → ο . ∀ x6 x7 x8 x9 . 726e4.. x0 x2 x4 x6 x8 = 726e4.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0x2 x10 = x3 x10)) (∀ x10 . prim1 x10 x0x4 x10 = x5 x10)) (x6 = x7)) (x8 = x9) (proof)
Theorem 6bcf3.. : ∀ x0 . ∀ x1 x2 : ι → ι . ∀ x3 x4 : ι → ο . ∀ x5 x6 . (∀ x7 . prim1 x7 x0x1 x7 = x2 x7)(∀ x7 . prim1 x7 x0iff (x3 x7) (x4 x7))726e4.. x0 x1 x3 x5 x6 = 726e4.. x0 x2 x4 x5 x6 (proof)
Definition 45c1b.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . prim1 x4 x2prim1 (x3 x4) x2)∀ x4 : ι → ο . ∀ x5 . prim1 x5 x2∀ x6 . prim1 x6 x2x1 (726e4.. x2 x3 x4 x5 x6))x1 x0
Theorem 5f7bc.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . prim1 x2 x0prim1 (x1 x2) x0)∀ x2 : ι → ο . ∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x045c1b.. (726e4.. x0 x1 x2 x3 x4) (proof)
Theorem 4d8d1.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ο . ∀ x3 x4 . 45c1b.. (726e4.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x1 x5) x0 (proof)
Theorem 6b740.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ο . ∀ x3 x4 . 45c1b.. (726e4.. x0 x1 x2 x3 x4)prim1 x3 x0 (proof)
Theorem 34ab5.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 : ι → ο . ∀ x3 x4 . 45c1b.. (726e4.. x0 x1 x2 x3 x4)prim1 x4 x0 (proof)
Theorem fff31.. : ∀ x0 . 45c1b.. x0x0 = 726e4.. (f482f.. x0 4a7ef..) (f482f.. (f482f.. x0 (4ae4a.. 4a7ef..))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (proof)
Definition a6a86.. := λ x0 . λ x1 : ι → (ι → ι)(ι → ο)ι → ι → ι . x1 (f482f.. x0 4a7ef..) (f482f.. (f482f.. x0 (4ae4a.. 4a7ef..))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 1f7f5.. : ∀ x0 : ι → (ι → ι)(ι → ο)ι → ι → ι . ∀ x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 x5 . (∀ x6 : ι → ι . (∀ x7 . prim1 x7 x1x2 x7 = x6 x7)∀ x7 : ι → ο . (∀ x8 . prim1 x8 x1iff (x3 x8) (x7 x8))x0 x1 x6 x7 x4 x5 = x0 x1 x2 x3 x4 x5)a6a86.. (726e4.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition da128.. := λ x0 . λ x1 : ι → (ι → ι)(ι → ο)ι → ι → ο . x1 (f482f.. x0 4a7ef..) (f482f.. (f482f.. x0 (4ae4a.. 4a7ef..))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem de93d.. : ∀ x0 : ι → (ι → ι)(ι → ο)ι → ι → ο . ∀ x1 . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 x5 . (∀ x6 : ι → ι . (∀ x7 . prim1 x7 x1x2 x7 = x6 x7)∀ x7 : ι → ο . (∀ x8 . prim1 x8 x1iff (x3 x8) (x7 x8))x0 x1 x6 x7 x4 x5 = x0 x1 x2 x3 x4 x5)da128.. (726e4.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 918ae.. := λ x0 . λ x1 x2 : ι → ι → ο . λ x3 x4 : ι → ο . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (d2155.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (d2155.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (1216a.. x0 x3) (1216a.. x0 x4)))))
Theorem b2354.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 x5 : ι → ο . x0 = 918ae.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem 0c8ea.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . ∀ x3 x4 : ι → ο . x0 = f482f.. (918ae.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Theorem ad372.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 x5 : ι → ο . x0 = 918ae.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x2 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 x7 (proof)
Theorem 9c2c2.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . ∀ x3 x4 : ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x1 x5 x6 = 2b2e3.. (f482f.. (918ae.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 x6 (proof)
Theorem 42853.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 x5 : ι → ο . x0 = 918ae.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x3 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 x7 (proof)
Theorem 8c63b.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . ∀ x3 x4 : ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x2 x5 x6 = 2b2e3.. (f482f.. (918ae.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 x6 (proof)
Theorem 5b026.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 x5 : ι → ο . x0 = 918ae.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x4 x6 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6 (proof)
Theorem 96786.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . ∀ x3 x4 : ι → ο . ∀ x5 . prim1 x5 x0x3 x5 = decode_p (f482f.. (918ae.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 (proof)
Theorem 27c75.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 x5 : ι → ο . x0 = 918ae.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x5 x6 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x6 (proof)
Theorem ad833.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . ∀ x3 x4 : ι → ο . ∀ x5 . prim1 x5 x0x4 x5 = decode_p (f482f.. (918ae.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 (proof)
Theorem 98f19.. : ∀ x0 x1 . ∀ x2 x3 x4 x5 : ι → ι → ο . ∀ x6 x7 x8 x9 : ι → ο . 918ae.. x0 x2 x4 x6 x8 = 918ae.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x4 x10 x11 = x5 x10 x11)) (∀ x10 . prim1 x10 x0x6 x10 = x7 x10)) (∀ x10 . prim1 x10 x0x8 x10 = x9 x10) (proof)
Theorem 55882.. : ∀ x0 . ∀ x1 x2 x3 x4 : ι → ι → ο . ∀ x5 x6 x7 x8 : ι → ο . (∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0iff (x1 x9 x10) (x2 x9 x10))(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0iff (x3 x9 x10) (x4 x9 x10))(∀ x9 . prim1 x9 x0iff (x5 x9) (x6 x9))(∀ x9 . prim1 x9 x0iff (x7 x9) (x8 x9))918ae.. x0 x1 x3 x5 x7 = 918ae.. x0 x2 x4 x6 x8 (proof)
Definition 8617f.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 x4 : ι → ι → ο . ∀ x5 x6 : ι → ο . x1 (918ae.. x2 x3 x4 x5 x6))x1 x0
Theorem a6584.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . ∀ x3 x4 : ι → ο . 8617f.. (918ae.. x0 x1 x2 x3 x4) (proof)
Theorem 77020.. : ∀ x0 . 8617f.. x0x0 = 918ae.. (f482f.. x0 4a7ef..) (2b2e3.. (f482f.. x0 (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))) (proof)
Definition abb35.. := λ x0 . λ x1 : ι → (ι → ι → ο)(ι → ι → ο)(ι → ο)(ι → ο) → ι . x1 (f482f.. x0 4a7ef..) (2b2e3.. (f482f.. x0 (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem 2ec61.. : ∀ x0 : ι → (ι → ι → ο)(ι → ι → ο)(ι → ο)(ι → ο) → ι . ∀ x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 x5 : ι → ο . (∀ x6 : ι → ι → ο . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1iff (x2 x7 x8) (x6 x7 x8))∀ x7 : ι → ι → ο . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1iff (x3 x8 x9) (x7 x8 x9))∀ x8 : ι → ο . (∀ x9 . prim1 x9 x1iff (x4 x9) (x8 x9))∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)abb35.. (918ae.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 7f9b4.. := λ x0 . λ x1 : ι → (ι → ι → ο)(ι → ι → ο)(ι → ο)(ι → ο) → ο . x1 (f482f.. x0 4a7ef..) (2b2e3.. (f482f.. x0 (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem 19a2d.. : ∀ x0 : ι → (ι → ι → ο)(ι → ι → ο)(ι → ο)(ι → ο) → ο . ∀ x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 x5 : ι → ο . (∀ x6 : ι → ι → ο . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1iff (x2 x7 x8) (x6 x7 x8))∀ x7 : ι → ι → ο . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1iff (x3 x8 x9) (x7 x8 x9))∀ x8 : ι → ο . (∀ x9 . prim1 x9 x1iff (x4 x9) (x8 x9))∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)7f9b4.. (918ae.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)