Search for blocks/addresses/...
Proofgold Asset
asset id
7d949246aff8146cb480250fc74a91aeb894642122cfaa31b8b70073c6428468
asset hash
04fedb19ebf0218366b03270cce959ad4e3c555fc05e222b4c78e274a82a8a52
bday / block
2897
tx
077a2..
preasset
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
c7d1f..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ο
.
λ x3 :
ι → ο
.
λ x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
0fc90..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
1216a..
x0
x3
)
x4
)
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
7d2e2..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
4a7ef..
=
x0
Theorem
1c95b..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
c7d1f..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
e05f5..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
f482f..
(
c7d1f..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Known
504a8..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
4a2a6..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
c7d1f..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
be277..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
x1
x5
=
f482f..
(
f482f..
(
c7d1f..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
fb20c..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
73165..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
c7d1f..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
c5a21..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
2b2e3..
(
f482f..
(
c7d1f..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
431f3..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
26d45..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
c7d1f..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
1f38c..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
x3
x5
=
decode_p
(
f482f..
(
c7d1f..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Known
ffdcd..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
Theorem
bd863..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
c7d1f..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
9cd02..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
x4
=
f482f..
(
c7d1f..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
56b30..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
∀ x6 x7 :
ι → ο
.
∀ x8 x9 .
c7d1f..
x0
x2
x4
x6
x8
=
c7d1f..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
x8
=
x9
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Theorem
fe636..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 x6 :
ι → ο
.
∀ x7 .
(
∀ x8 .
prim1
x8
x0
⟶
x1
x8
=
x2
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
iff
(
x3
x8
x9
)
(
x4
x8
x9
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
iff
(
x5
x8
)
(
x6
x8
)
)
⟶
c7d1f..
x0
x1
x3
x5
x7
=
c7d1f..
x0
x2
x4
x6
x7
(proof)
Definition
b610d..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
∀ x6 .
prim1
x6
x2
⟶
x1
(
c7d1f..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
f2018..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
b610d..
(
c7d1f..
x0
x1
x2
x3
x4
)
(proof)
Theorem
c30a4..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
b610d..
(
c7d1f..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x1
x5
)
x0
(proof)
Theorem
cb18b..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
b610d..
(
c7d1f..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
7c672..
:
∀ x0 .
b610d..
x0
⟶
x0
=
c7d1f..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
ec111..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
2f87c..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
(
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x2
x7
=
x6
x7
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
ec111..
(
c7d1f..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
32c7c..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
b2ef3..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
(
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x2
x7
=
x6
x7
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
32c7c..
(
c7d1f..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
bd517..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι →
ι → ο
.
λ x3 x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
0fc90..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
Theorem
0b229..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
bd517..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
77703..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
x0
=
f482f..
(
bd517..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
c7fd3..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
bd517..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
8cd35..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
x1
x5
=
f482f..
(
f482f..
(
bd517..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
1348b..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
bd517..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
71c9c..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
2b2e3..
(
f482f..
(
bd517..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
4c95d..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
bd517..
x1
x2
x3
x4
x5
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
0f14e..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
x3
=
f482f..
(
bd517..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
71b43..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
bd517..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
c5ea1..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
x4
=
f482f..
(
bd517..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
cdba3..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
∀ x6 x7 x8 x9 .
bd517..
x0
x2
x4
x6
x8
=
bd517..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
x6
=
x7
)
)
(
x8
=
x9
)
(proof)
Theorem
1fd36..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 x6 .
(
∀ x7 .
prim1
x7
x0
⟶
x1
x7
=
x2
x7
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
x3
x7
x8
)
(
x4
x7
x8
)
)
⟶
bd517..
x0
x1
x3
x5
x6
=
bd517..
x0
x2
x4
x5
x6
(proof)
Definition
4b311..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
x1
(
bd517..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
a0b68..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
4b311..
(
bd517..
x0
x1
x2
x3
x4
)
(proof)
Theorem
ea18c..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
4b311..
(
bd517..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x1
x5
)
x0
(proof)
Theorem
29640..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
4b311..
(
bd517..
x0
x1
x2
x3
x4
)
⟶
prim1
x3
x0
(proof)
Theorem
b4986..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
4b311..
(
bd517..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
c03b4..
:
∀ x0 .
4b311..
x0
⟶
x0
=
bd517..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
ce9f4..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
7b9b4..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
(
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x2
x7
=
x6
x7
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
ce9f4..
(
bd517..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
50937..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
49059..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
(
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x2
x7
=
x6
x7
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
50937..
(
bd517..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
726e4..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 :
ι → ο
.
λ x3 x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
0fc90..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
1216a..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
Theorem
9205a..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
x0
=
726e4..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
e2946..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 x4 .
x0
=
f482f..
(
726e4..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
90bdf..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
x0
=
726e4..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x2
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
44359..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
x1
x5
=
f482f..
(
f482f..
(
726e4..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
54141..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
x0
=
726e4..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
(proof)
Theorem
62515..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
x2
x5
=
decode_p
(
f482f..
(
726e4..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Theorem
30331..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
x0
=
726e4..
x1
x2
x3
x4
x5
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
1741e..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 x4 .
x3
=
f482f..
(
726e4..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
5c572..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
x0
=
726e4..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
fa56b..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 x4 .
x4
=
f482f..
(
726e4..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
9df7f..
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
∀ x6 x7 x8 x9 .
726e4..
x0
x2
x4
x6
x8
=
726e4..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x4
x10
=
x5
x10
)
)
(
x6
=
x7
)
)
(
x8
=
x9
)
(proof)
Theorem
6bcf3..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 :
ι → ο
.
∀ x5 x6 .
(
∀ x7 .
prim1
x7
x0
⟶
x1
x7
=
x2
x7
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
iff
(
x3
x7
)
(
x4
x7
)
)
⟶
726e4..
x0
x1
x3
x5
x6
=
726e4..
x0
x2
x4
x5
x6
(proof)
Definition
45c1b..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x3
x4
)
x2
)
⟶
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
x1
(
726e4..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
5f7bc..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
x0
)
⟶
∀ x2 :
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
45c1b..
(
726e4..
x0
x1
x2
x3
x4
)
(proof)
Theorem
4d8d1..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 x4 .
45c1b..
(
726e4..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x1
x5
)
x0
(proof)
Theorem
6b740..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 x4 .
45c1b..
(
726e4..
x0
x1
x2
x3
x4
)
⟶
prim1
x3
x0
(proof)
Theorem
34ab5..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 x4 .
45c1b..
(
726e4..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
fff31..
:
∀ x0 .
45c1b..
x0
⟶
x0
=
726e4..
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
a6a86..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→
ι →
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
1f7f5..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
(
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x2
x7
=
x6
x7
)
⟶
∀ x7 :
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x8
)
(
x7
x8
)
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
a6a86..
(
726e4..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
da128..
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→
ι →
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
f482f..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
de93d..
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
(
∀ x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
x2
x7
=
x6
x7
)
⟶
∀ x7 :
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
iff
(
x3
x8
)
(
x7
x8
)
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
da128..
(
726e4..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
918ae..
:=
λ x0 .
λ x1 x2 :
ι →
ι → ο
.
λ x3 x4 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
d2155..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
1216a..
x0
x3
)
(
1216a..
x0
x4
)
)
)
)
)
Theorem
b2354..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
x0
=
918ae..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
0c8ea..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
x0
=
f482f..
(
918ae..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
ad372..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
x0
=
918ae..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
x7
(proof)
Theorem
9c2c2..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
2b2e3..
(
f482f..
(
918ae..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Theorem
42853..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
x0
=
918ae..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
8c63b..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
2b2e3..
(
f482f..
(
918ae..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
5b026..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
x0
=
918ae..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
96786..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
decode_p
(
f482f..
(
918ae..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
27c75..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
x0
=
918ae..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x5
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
(proof)
Theorem
ad833..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x4
x5
=
decode_p
(
f482f..
(
918ae..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(proof)
Theorem
98f19..
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ο
.
∀ x6 x7 x8 x9 :
ι → ο
.
918ae..
x0
x2
x4
x6
x8
=
918ae..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x8
x10
=
x9
x10
)
(proof)
Theorem
55882..
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ο
.
∀ x5 x6 x7 x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x1
x9
x10
)
(
x2
x9
x10
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x3
x9
x10
)
(
x4
x9
x10
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x5
x9
)
(
x6
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x7
x9
)
(
x8
x9
)
)
⟶
918ae..
x0
x1
x3
x5
x7
=
918ae..
x0
x2
x4
x6
x8
(proof)
Definition
8617f..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 x6 :
ι → ο
.
x1
(
918ae..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
a6584..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
8617f..
(
918ae..
x0
x1
x2
x3
x4
)
(proof)
Theorem
77020..
:
∀ x0 .
8617f..
x0
⟶
x0
=
918ae..
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
abb35..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
2ec61..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x2
x7
x8
)
(
x6
x7
x8
)
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
abb35..
(
918ae..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
7f9b4..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
19a2d..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 :
ι →
ι → ο
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
iff
(
x2
x7
x8
)
(
x6
x7
x8
)
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
7f9b4..
(
918ae..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)