Search for blocks/addresses/...
Proofgold Asset
asset id
05189832d06dae0a00206c9481fdf4bc5144b80bbcbf532e059e1be2cfb07cb0
asset hash
d469030882c93ac283800d458dc476982823fbd60f50a417fd76ea6b28695169
bday / block
9377
tx
6ddbf..
preasset
doc published by
PrGxv..
Param
and
and
:
ο
→
ο
→
ο
Definition
35624..
:=
λ x0 :
(
ι → ο
)
→ ο
.
λ x1 :
(
ι →
ι → ο
)
→ ο
.
λ x2 .
λ x3 x4 :
ι →
ι → ι
.
and
(
and
(
and
(
x0
(
λ x5 .
x3
x5
x2
=
x5
)
)
(
x1
(
λ x5 x6 .
x3
x5
x6
=
x3
x6
x5
)
)
)
(
x0
(
λ x5 .
x0
(
λ x6 .
x3
(
x4
x5
x6
)
x6
=
x5
)
)
)
)
(
x0
(
λ x5 .
x0
(
λ x6 .
x4
(
x3
x5
x6
)
x6
=
x5
)
)
)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
dc01f..
:=
λ x0 :
(
ι → ο
)
→ ο
.
λ x1 :
(
ι →
ι → ο
)
→ ο
.
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x13 .
ap
(
ap
(
x12
(
x12
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
)
(
x12
x3
x7
x11
x4
x9
x8
x2
x5
x6
x10
)
(
x12
x4
x11
x3
x7
x8
x10
x5
x6
x2
x9
)
(
x12
x5
x4
x7
x3
x2
x9
x10
x11
x8
x6
)
(
x12
x6
x9
x8
x2
x7
x4
x11
x10
x5
x3
)
(
x12
x7
x8
x10
x9
x4
x6
x3
x2
x11
x5
)
(
x12
x8
x2
x5
x10
x11
x3
x6
x4
x9
x7
)
(
x12
x9
x5
x6
x11
x10
x2
x4
x7
x3
x8
)
(
x12
x10
x6
x2
x8
x5
x11
x9
x3
x7
x4
)
(
x12
x11
x10
x9
x6
x3
x5
x7
x8
x4
x2
)
)
x13
)
Definition
301ed..
:=
λ x0 :
(
ι → ο
)
→ ο
.
λ x1 :
(
ι →
ι → ο
)
→ ο
.
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x13 .
ap
(
ap
(
x12
(
x12
x2
x8
x10
x6
x5
x9
x3
x7
x4
x11
)
(
x12
x3
x2
x4
x5
x11
x8
x7
x10
x9
x6
)
(
x12
x4
x5
x2
x3
x7
x6
x9
x8
x11
x10
)
(
x12
x5
x9
x8
x2
x10
x11
x4
x3
x6
x7
)
(
x12
x6
x10
x9
x11
x2
x7
x8
x4
x3
x5
)
(
x12
x7
x3
x5
x4
x6
x2
x11
x9
x10
x8
)
(
x12
x8
x7
x6
x10
x4
x3
x2
x11
x5
x9
)
(
x12
x9
x6
x11
x7
x3
x5
x10
x2
x8
x4
)
(
x12
x10
x11
x7
x8
x9
x4
x5
x6
x2
x3
)
(
x12
x11
x4
x3
x9
x8
x10
x6
x5
x7
x2
)
)
x13
)
Definition
5dfca..
:=
λ x0 :
(
ι → ο
)
→ ο
.
λ x1 :
(
ι →
ι → ο
)
→ ο
.
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x13 x14 :
ι →
ι → ι
.
λ x15 x16 x17 .
x14
(
x13
(
x13
x17
x15
)
x16
)
(
x13
x15
x16
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
b7323..
:
∀ x0 :
(
ι → ο
)
→ ο
.
∀ x1 :
(
ι →
ι → ο
)
→ ο
.
∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
(
∀ x12 :
ι → ο
.
x12
x2
⟶
x12
x3
⟶
x12
x4
⟶
x12
x5
⟶
x12
x6
⟶
x12
x7
⟶
x12
x8
⟶
x12
x9
⟶
x12
x10
⟶
x12
x11
⟶
x0
x12
)
⟶
(
∀ x12 :
ι →
ι → ο
.
x12
x2
x2
⟶
x12
x2
x3
⟶
x12
x2
x4
⟶
x12
x2
x5
⟶
x12
x2
x6
⟶
x12
x2
x7
⟶
x12
x2
x8
⟶
x12
x2
x9
⟶
x12
x2
x10
⟶
x12
x2
x11
⟶
x12
x3
x2
⟶
x12
x3
x3
⟶
x12
x3
x4
⟶
x12
x3
x5
⟶
x12
x3
x6
⟶
x12
x3
x7
⟶
x12
x3
x8
⟶
x12
x3
x9
⟶
x12
x3
x10
⟶
x12
x3
x11
⟶
x12
x4
x2
⟶
x12
x4
x3
⟶
x12
x4
x4
⟶
x12
x4
x5
⟶
x12
x4
x6
⟶
x12
x4
x7
⟶
x12
x4
x8
⟶
x12
x4
x9
⟶
x12
x4
x10
⟶
x12
x4
x11
⟶
x12
x5
x2
⟶
x12
x5
x3
⟶
x12
x5
x4
⟶
x12
x5
x5
⟶
x12
x5
x6
⟶
x12
x5
x7
⟶
x12
x5
x8
⟶
x12
x5
x9
⟶
x12
x5
x10
⟶
x12
x5
x11
⟶
x12
x6
x2
⟶
x12
x6
x3
⟶
x12
x6
x4
⟶
x12
x6
x5
⟶
x12
x6
x6
⟶
x12
x6
x7
⟶
x12
x6
x8
⟶
x12
x6
x9
⟶
x12
x6
x10
⟶
x12
x6
x11
⟶
x12
x7
x2
⟶
x12
x7
x3
⟶
x12
x7
x4
⟶
x12
x7
x5
⟶
x12
x7
x6
⟶
x12
x7
x7
⟶
x12
x7
x8
⟶
x12
x7
x9
⟶
x12
x7
x10
⟶
x12
x7
x11
⟶
x12
x8
x2
⟶
x12
x8
x3
⟶
x12
x8
x4
⟶
x12
x8
x5
⟶
x12
x8
x6
⟶
x12
x8
x7
⟶
x12
x8
x8
⟶
x12
x8
x9
⟶
x12
x8
x10
⟶
x12
x8
x11
⟶
x12
x9
x2
⟶
x12
x9
x3
⟶
x12
x9
x4
⟶
x12
x9
x5
⟶
x12
x9
x6
⟶
x12
x9
x7
⟶
x12
x9
x8
⟶
x12
x9
x9
⟶
x12
x9
x10
⟶
x12
x9
x11
⟶
x12
x10
x2
⟶
x12
x10
x3
⟶
x12
x10
x4
⟶
x12
x10
x5
⟶
x12
x10
x6
⟶
x12
x10
x7
⟶
x12
x10
x8
⟶
x12
x10
x9
⟶
x12
x10
x10
⟶
x12
x10
x11
⟶
x12
x11
x2
⟶
x12
x11
x3
⟶
x12
x11
x4
⟶
x12
x11
x5
⟶
x12
x11
x6
⟶
x12
x11
x7
⟶
x12
x11
x8
⟶
x12
x11
x9
⟶
x12
x11
x10
⟶
x12
x11
x11
⟶
x0
(
λ x13 .
x0
(
x12
x13
)
)
)
⟶
(
∀ x12 :
ι →
ι → ο
.
x12
x2
x3
⟶
x12
x2
x4
⟶
x12
x3
x4
⟶
x12
x2
x5
⟶
x12
x3
x5
⟶
x12
x4
x5
⟶
x12
x2
x6
⟶
x12
x3
x6
⟶
x12
x4
x6
⟶
x12
x5
x6
⟶
x12
x2
x7
⟶
x12
x3
x7
⟶
x12
x4
x7
⟶
x12
x5
x7
⟶
x12
x6
x7
⟶
x12
x2
x8
⟶
x12
x3
x8
⟶
x12
x4
x8
⟶
x12
x5
x8
⟶
x12
x6
x8
⟶
x12
x7
x8
⟶
x12
x2
x9
⟶
x12
x3
x9
⟶
x12
x4
x9
⟶
x12
x5
x9
⟶
x12
x6
x9
⟶
x12
x7
x9
⟶
x12
x8
x9
⟶
x12
x2
x10
⟶
x12
x3
x10
⟶
x12
x4
x10
⟶
x12
x5
x10
⟶
x12
x6
x10
⟶
x12
x7
x10
⟶
x12
x8
x10
⟶
x12
x9
x10
⟶
x12
x2
x11
⟶
x12
x3
x11
⟶
x12
x4
x11
⟶
x12
x5
x11
⟶
x12
x6
x11
⟶
x12
x7
x11
⟶
x12
x8
x11
⟶
x12
x9
x11
⟶
x12
x10
x11
⟶
x1
x12
)
⟶
∀ x12 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
)
x2
=
x13
)
⟶
(
∀ x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
)
x3
=
x14
)
⟶
(
∀ x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
)
x4
=
x15
)
⟶
(
∀ x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
)
x5
=
x16
)
⟶
(
∀ x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
)
x6
=
x17
)
⟶
(
∀ x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
)
x7
=
x18
)
⟶
(
∀ x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
)
x8
=
x19
)
⟶
(
∀ x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
)
x9
=
x20
)
⟶
(
∀ x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
)
x10
=
x21
)
⟶
(
∀ x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
ap
(
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
)
x11
=
x22
)
⟶
∀ x13 : ο .
(
∀ x14 :
ι →
ι → ι
.
(
∀ x15 : ο .
(
∀ x16 :
ι →
ι → ι
.
and
(
and
(
35624..
x0
x1
x2
x14
x16
)
(
5dfca..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x14
x16
x6
x4
(
5dfca..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x14
x16
x7
x8
x7
)
=
5dfca..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x14
x16
x7
x8
(
5dfca..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x14
x16
x6
x4
x7
)
)
)
(
∀ x17 : ο .
(
∀ x18 .
(
∀ x19 : ο .
(
∀ x20 .
(
∀ x21 : ο .
(
∀ x22 .
(
∀ x23 : ο .
(
∀ x24 .
(
∀ x25 : ο .
(
∀ x26 .
and
(
x14
x24
(
x14
(
x14
(
x16
x2
x22
)
(
5dfca..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x14
x16
x18
x20
x22
)
)
x26
)
=
x3
)
(
x14
(
x14
x24
(
x14
(
x16
x2
x22
)
(
5dfca..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x14
x16
x18
x20
x22
)
)
)
x26
=
x4
)
⟶
x25
)
⟶
x25
)
⟶
x23
)
⟶
x23
)
⟶
x21
)
⟶
x21
)
⟶
x19
)
⟶
x19
)
⟶
x17
)
⟶
x17
)
⟶
x15
)
⟶
x15
)
⟶
x13
)
⟶
x13
(proof)