Search for blocks/addresses/...

Proofgold Asset

asset id
7b15b91c9650c24022ee436616e0cd8052c268151faf45ec508d363d03194280
asset hash
055d83b9e6883711185b3d17a7d92cfafd8a9c7ad33bdc890038854af2ccccc9
bday / block
36385
tx
fd9a0..
preasset
doc published by PrCmT..
Known df_minmar1__df_cpmat__df_mat2pmat__df_cpmat2mat__df_decpmat__df_pm2mp__df_chpmat__df_top__df_topon__df_topsp__df_bases__df_cld__df_ntr__df_cls__df_nei__df_lp__df_perf__df_cn : ∀ x0 : ο . (wceq cminmar1 (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cmpt (λ x3 . cfv (co (cv x1) (cv x2) cmat) cbs) (λ x3 . cmpt2 (λ x4 x5 . cv x1) (λ x4 x5 . cv x1) (λ x4 x5 . cmpt2 (λ x6 x7 . cv x1) (λ x6 x7 . cv x1) (λ x6 x7 . cif (wceq (cv x6) (cv x4)) (cif (wceq (cv x7) (cv x5)) (cfv (cv x2) cur) (cfv (cv x2) c0g)) (co (cv x6) (cv x7) (cv x3)))))))wceq ccpmat (cmpt2 (λ x1 x2 . cfn) (λ x1 x2 . cvv) (λ x1 x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wral (λ x6 . wceq (cfv (cv x6) (cfv (co (cv x4) (cv x5) (cv x3)) cco1)) (cfv (cv x2) c0g)) (λ x6 . cn)) (λ x5 . cv x1)) (λ x4 . cv x1)) (λ x3 . cfv (co (cv x1) (cfv (cv x2) cpl1) cmat) cbs)))wceq cmat2pmat (cmpt2 (λ x1 x2 . cfn) (λ x1 x2 . cvv) (λ x1 x2 . cmpt (λ x3 . cfv (co (cv x1) (cv x2) cmat) cbs) (λ x3 . cmpt2 (λ x4 x5 . cv x1) (λ x4 x5 . cv x1) (λ x4 x5 . cfv (co (cv x4) (cv x5) (cv x3)) (cfv (cfv (cv x2) cpl1) cascl)))))wceq ccpmat2mat (cmpt2 (λ x1 x2 . cfn) (λ x1 x2 . cvv) (λ x1 x2 . cmpt (λ x3 . co (cv x1) (cv x2) ccpmat) (λ x3 . cmpt2 (λ x4 x5 . cv x1) (λ x4 x5 . cv x1) (λ x4 x5 . cfv cc0 (cfv (co (cv x4) (cv x5) (cv x3)) cco1)))))wceq cdecpmat (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cn0) (λ x1 x2 . cmpt2 (λ x3 x4 . cdm (cdm (cv x1))) (λ x3 x4 . cdm (cdm (cv x1))) (λ x3 x4 . cfv (cv x2) (cfv (co (cv x3) (cv x4) (cv x1)) cco1))))wceq cpm2mp (cmpt2 (λ x1 x2 . cfn) (λ x1 x2 . cvv) (λ x1 x2 . cmpt (λ x3 . cfv (co (cv x1) (cfv (cv x2) cpl1) cmat) cbs) (λ x3 . csb (co (cv x1) (cv x2) cmat) (λ x4 . csb (cfv (cv x4) cpl1) (λ x5 . co (cv x5) (cmpt (λ x6 . cn0) (λ x6 . co (co (cv x3) (cv x6) cdecpmat) (co (cv x6) (cfv (cv x4) cv1) (cfv (cfv (cv x5) cmgp) cmg)) (cfv (cv x5) cvsca))) cgsu)))))wceq cchpmat (cmpt2 (λ x1 x2 . cfn) (λ x1 x2 . cvv) (λ x1 x2 . cmpt (λ x3 . cfv (co (cv x1) (cv x2) cmat) cbs) (λ x3 . cfv (co (co (cfv (cv x2) cv1) (cfv (co (cv x1) (cfv (cv x2) cpl1) cmat) cur) (cfv (co (cv x1) (cfv (cv x2) cpl1) cmat) cvsca)) (cfv (cv x3) (co (cv x1) (cv x2) cmat2pmat)) (cfv (co (cv x1) (cfv (cv x2) cpl1) cmat) csg)) (co (cv x1) (cfv (cv x2) cpl1) cmdat))))wceq ctop (cab (λ x1 . wa (wral (λ x2 . wcel (cuni (cv x2)) (cv x1)) (λ x2 . cpw (cv x1))) (wral (λ x2 . wral (λ x3 . wcel (cin (cv x2) (cv x3)) (cv x1)) (λ x3 . cv x1)) (λ x2 . cv x1))))wceq ctopon (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wceq (cv x1) (cuni (cv x2))) (λ x2 . ctop)))wceq ctps (cab (λ x1 . wcel (cfv (cv x1) ctopn) (cfv (cfv (cv x1) cbs) ctopon)))wceq ctb (cab (λ x1 . wral (λ x2 . wral (λ x3 . wss (cin (cv x2) (cv x3)) (cuni (cin (cv x1) (cpw (cin (cv x2) (cv x3)))))) (λ x3 . cv x1)) (λ x2 . cv x1)))wceq ccld (cmpt (λ x1 . ctop) (λ x1 . crab (λ x2 . wcel (cdif (cuni (cv x1)) (cv x2)) (cv x1)) (λ x2 . cpw (cuni (cv x1)))))wceq cnt (cmpt (λ x1 . ctop) (λ x1 . cmpt (λ x2 . cpw (cuni (cv x1))) (λ x2 . cuni (cin (cv x1) (cpw (cv x2))))))wceq ccl (cmpt (λ x1 . ctop) (λ x1 . cmpt (λ x2 . cpw (cuni (cv x1))) (λ x2 . cint (crab (λ x3 . wss (cv x2) (cv x3)) (λ x3 . cfv (cv x1) ccld)))))wceq cnei (cmpt (λ x1 . ctop) (λ x1 . cmpt (λ x2 . cpw (cuni (cv x1))) (λ x2 . crab (λ x3 . wrex (λ x4 . wa (wss (cv x2) (cv x4)) (wss (cv x4) (cv x3))) (λ x4 . cv x1)) (λ x3 . cpw (cuni (cv x1))))))wceq clp (cmpt (λ x1 . ctop) (λ x1 . cmpt (λ x2 . cpw (cuni (cv x1))) (λ x2 . cab (λ x3 . wcel (cv x3) (cfv (cdif (cv x2) (csn (cv x3))) (cfv (cv x1) ccl))))))wceq cperf (crab (λ x1 . wceq (cfv (cuni (cv x1)) (cfv (cv x1) clp)) (cuni (cv x1))) (λ x1 . ctop))wceq ccn (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . ctop) (λ x1 x2 . crab (λ x3 . wral (λ x4 . wcel (cima (ccnv (cv x3)) (cv x4)) (cv x1)) (λ x4 . cv x2)) (λ x3 . co (cuni (cv x2)) (cuni (cv x1)) cmap)))x0)x0
Theorem df_minmar1 : wceq cminmar1 (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . cmpt (λ x2 . cfv (co (cv x0) (cv x1) cmat) cbs) (λ x2 . cmpt2 (λ x3 x4 . cv x0) (λ x3 x4 . cv x0) (λ x3 x4 . cmpt2 (λ x5 x6 . cv x0) (λ x5 x6 . cv x0) (λ x5 x6 . cif (wceq (cv x5) (cv x3)) (cif (wceq (cv x6) (cv x4)) (cfv (cv x1) cur) (cfv (cv x1) c0g)) (co (cv x5) (cv x6) (cv x2))))))) (proof)
Theorem df_cpmat : wceq ccpmat (cmpt2 (λ x0 x1 . cfn) (λ x0 x1 . cvv) (λ x0 x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wral (λ x5 . wceq (cfv (cv x5) (cfv (co (cv x3) (cv x4) (cv x2)) cco1)) (cfv (cv x1) c0g)) (λ x5 . cn)) (λ x4 . cv x0)) (λ x3 . cv x0)) (λ x2 . cfv (co (cv x0) (cfv (cv x1) cpl1) cmat) cbs))) (proof)
Theorem df_mat2pmat : wceq cmat2pmat (cmpt2 (λ x0 x1 . cfn) (λ x0 x1 . cvv) (λ x0 x1 . cmpt (λ x2 . cfv (co (cv x0) (cv x1) cmat) cbs) (λ x2 . cmpt2 (λ x3 x4 . cv x0) (λ x3 x4 . cv x0) (λ x3 x4 . cfv (co (cv x3) (cv x4) (cv x2)) (cfv (cfv (cv x1) cpl1) cascl))))) (proof)
Theorem df_cpmat2mat : wceq ccpmat2mat (cmpt2 (λ x0 x1 . cfn) (λ x0 x1 . cvv) (λ x0 x1 . cmpt (λ x2 . co (cv x0) (cv x1) ccpmat) (λ x2 . cmpt2 (λ x3 x4 . cv x0) (λ x3 x4 . cv x0) (λ x3 x4 . cfv cc0 (cfv (co (cv x3) (cv x4) (cv x2)) cco1))))) (proof)
Theorem df_decpmat : wceq cdecpmat (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cn0) (λ x0 x1 . cmpt2 (λ x2 x3 . cdm (cdm (cv x0))) (λ x2 x3 . cdm (cdm (cv x0))) (λ x2 x3 . cfv (cv x1) (cfv (co (cv x2) (cv x3) (cv x0)) cco1)))) (proof)
Theorem df_pm2mp : wceq cpm2mp (cmpt2 (λ x0 x1 . cfn) (λ x0 x1 . cvv) (λ x0 x1 . cmpt (λ x2 . cfv (co (cv x0) (cfv (cv x1) cpl1) cmat) cbs) (λ x2 . csb (co (cv x0) (cv x1) cmat) (λ x3 . csb (cfv (cv x3) cpl1) (λ x4 . co (cv x4) (cmpt (λ x5 . cn0) (λ x5 . co (co (cv x2) (cv x5) cdecpmat) (co (cv x5) (cfv (cv x3) cv1) (cfv (cfv (cv x4) cmgp) cmg)) (cfv (cv x4) cvsca))) cgsu))))) (proof)
Theorem df_chpmat : wceq cchpmat (cmpt2 (λ x0 x1 . cfn) (λ x0 x1 . cvv) (λ x0 x1 . cmpt (λ x2 . cfv (co (cv x0) (cv x1) cmat) cbs) (λ x2 . cfv (co (co (cfv (cv x1) cv1) (cfv (co (cv x0) (cfv (cv x1) cpl1) cmat) cur) (cfv (co (cv x0) (cfv (cv x1) cpl1) cmat) cvsca)) (cfv (cv x2) (co (cv x0) (cv x1) cmat2pmat)) (cfv (co (cv x0) (cfv (cv x1) cpl1) cmat) csg)) (co (cv x0) (cfv (cv x1) cpl1) cmdat)))) (proof)
Theorem df_top : wceq ctop (cab (λ x0 . wa (wral (λ x1 . wcel (cuni (cv x1)) (cv x0)) (λ x1 . cpw (cv x0))) (wral (λ x1 . wral (λ x2 . wcel (cin (cv x1) (cv x2)) (cv x0)) (λ x2 . cv x0)) (λ x1 . cv x0)))) (proof)
Theorem df_topon : wceq ctopon (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wceq (cv x0) (cuni (cv x1))) (λ x1 . ctop))) (proof)
Theorem df_topsp : wceq ctps (cab (λ x0 . wcel (cfv (cv x0) ctopn) (cfv (cfv (cv x0) cbs) ctopon))) (proof)
Theorem df_bases : wceq ctb (cab (λ x0 . wral (λ x1 . wral (λ x2 . wss (cin (cv x1) (cv x2)) (cuni (cin (cv x0) (cpw (cin (cv x1) (cv x2)))))) (λ x2 . cv x0)) (λ x1 . cv x0))) (proof)
Theorem df_cld : wceq ccld (cmpt (λ x0 . ctop) (λ x0 . crab (λ x1 . wcel (cdif (cuni (cv x0)) (cv x1)) (cv x0)) (λ x1 . cpw (cuni (cv x0))))) (proof)
Theorem df_ntr : wceq cnt (cmpt (λ x0 . ctop) (λ x0 . cmpt (λ x1 . cpw (cuni (cv x0))) (λ x1 . cuni (cin (cv x0) (cpw (cv x1)))))) (proof)
Theorem df_cls : wceq ccl (cmpt (λ x0 . ctop) (λ x0 . cmpt (λ x1 . cpw (cuni (cv x0))) (λ x1 . cint (crab (λ x2 . wss (cv x1) (cv x2)) (λ x2 . cfv (cv x0) ccld))))) (proof)
Theorem df_nei : wceq cnei (cmpt (λ x0 . ctop) (λ x0 . cmpt (λ x1 . cpw (cuni (cv x0))) (λ x1 . crab (λ x2 . wrex (λ x3 . wa (wss (cv x1) (cv x3)) (wss (cv x3) (cv x2))) (λ x3 . cv x0)) (λ x2 . cpw (cuni (cv x0)))))) (proof)
Theorem df_lp : wceq clp (cmpt (λ x0 . ctop) (λ x0 . cmpt (λ x1 . cpw (cuni (cv x0))) (λ x1 . cab (λ x2 . wcel (cv x2) (cfv (cdif (cv x1) (csn (cv x2))) (cfv (cv x0) ccl)))))) (proof)
Theorem df_perf : wceq cperf (crab (λ x0 . wceq (cfv (cuni (cv x0)) (cfv (cv x0) clp)) (cuni (cv x0))) (λ x0 . ctop)) (proof)
Theorem df_cn : wceq ccn (cmpt2 (λ x0 x1 . ctop) (λ x0 x1 . ctop) (λ x0 x1 . crab (λ x2 . wral (λ x3 . wcel (cima (ccnv (cv x2)) (cv x3)) (cv x0)) (λ x3 . cv x1)) (λ x2 . co (cuni (cv x1)) (cuni (cv x0)) cmap))) (proof)