Search for blocks/addresses/...

Proofgold Asset

asset id
3d92450513b54390d05de3b6eb3f411c8b676437e8c42df9bd8b6af5968cd299
asset hash
078b809d23eed44b8332345d1a78f192ce5d5249ad4bfdd3b3814b81a7bb0a6a
bday / block
36388
tx
df09f..
preasset
doc published by PrCmT..
Known df_ordt__df_xrs__df_qtop__df_imas__df_qus__df_xps__df_mre__df_mrc__df_mri__df_acs__df_cat__df_cid__df_homf__df_comf__df_oppc__df_mon__df_epi__df_sect : ∀ x0 : ο . (wceq cordt (cmpt (λ x1 . cvv) (λ x1 . cfv (cfv (cun (csn (cdm (cv x1))) (crn (cun (cmpt (λ x2 . cdm (cv x1)) (λ x2 . crab (λ x3 . wn (wbr (cv x3) (cv x2) (cv x1))) (λ x3 . cdm (cv x1)))) (cmpt (λ x2 . cdm (cv x1)) (λ x2 . crab (λ x3 . wn (wbr (cv x2) (cv x3) (cv x1))) (λ x3 . cdm (cv x1))))))) cfi) ctg))wceq cxrs (cun (ctp (cop (cfv cnx cbs) cxr) (cop (cfv cnx cplusg) cxad) (cop (cfv cnx cmulr) cxmu)) (ctp (cop (cfv cnx cts) (cfv cle cordt)) (cop (cfv cnx cple) cle) (cop (cfv cnx cds) (cmpt2 (λ x1 x2 . cxr) (λ x1 x2 . cxr) (λ x1 x2 . cif (wbr (cv x1) (cv x2) cle) (co (cv x2) (cxne (cv x1)) cxad) (co (cv x1) (cxne (cv x2)) cxad))))))wceq cqtop (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . crab (λ x3 . wcel (cin (cima (ccnv (cv x2)) (cv x3)) (cuni (cv x1))) (cv x1)) (λ x3 . cpw (cima (cv x2) (cuni (cv x1))))))wceq cimas (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . csb (cfv (cv x2) cbs) (λ x3 . cun (cun (ctp (cop (cfv cnx cbs) (crn (cv x1))) (cop (cfv cnx cplusg) (ciun (λ x4 . cv x3) (λ x4 . ciun (λ x5 . cv x3) (λ x5 . csn (cop (cop (cfv (cv x4) (cv x1)) (cfv (cv x5) (cv x1))) (cfv (co (cv x4) (cv x5) (cfv (cv x2) cplusg)) (cv x1))))))) (cop (cfv cnx cmulr) (ciun (λ x4 . cv x3) (λ x4 . ciun (λ x5 . cv x3) (λ x5 . csn (cop (cop (cfv (cv x4) (cv x1)) (cfv (cv x5) (cv x1))) (cfv (co (cv x4) (cv x5) (cfv (cv x2) cmulr)) (cv x1)))))))) (ctp (cop (cfv cnx csca) (cfv (cv x2) csca)) (cop (cfv cnx cvsca) (ciun (λ x4 . cv x3) (λ x4 . cmpt2 (λ x5 x6 . cfv (cfv (cv x2) csca) cbs) (λ x5 x6 . csn (cfv (cv x4) (cv x1))) (λ x5 x6 . cfv (co (cv x5) (cv x4) (cfv (cv x2) cvsca)) (cv x1))))) (cop (cfv cnx cip) (ciun (λ x4 . cv x3) (λ x4 . ciun (λ x5 . cv x3) (λ x5 . csn (cop (cop (cfv (cv x4) (cv x1)) (cfv (cv x5) (cv x1))) (co (cv x4) (cv x5) (cfv (cv x2) cip))))))))) (ctp (cop (cfv cnx cts) (co (cfv (cv x2) ctopn) (cv x1) cqtop)) (cop (cfv cnx cple) (ccom (ccom (cv x1) (cfv (cv x2) cple)) (ccnv (cv x1)))) (cop (cfv cnx cds) (cmpt2 (λ x4 x5 . crn (cv x1)) (λ x4 x5 . crn (cv x1)) (λ x4 x5 . cinf (ciun (λ x6 . cn) (λ x6 . crn (cmpt (λ x7 . crab (λ x8 . w3a (wceq (cfv (cfv (cfv c1 (cv x8)) c1st) (cv x1)) (cv x4)) (wceq (cfv (cfv (cfv (cv x6) (cv x8)) c2nd) (cv x1)) (cv x5)) (wral (λ x9 . wceq (cfv (cfv (cfv (cv x9) (cv x8)) c2nd) (cv x1)) (cfv (cfv (cfv (co (cv x9) c1 caddc) (cv x8)) c1st) (cv x1))) (λ x9 . co c1 (co (cv x6) c1 cmin) cfz))) (λ x8 . co (cxp (cv x3) (cv x3)) (co c1 (cv x6) cfz) cmap)) (λ x7 . co cxrs (ccom (cfv (cv x2) cds) (cv x7)) cgsu)))) cxr clt)))))))wceq cqus (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . co (cmpt (λ x3 . cfv (cv x1) cbs) (λ x3 . cec (cv x3) (cv x2))) (cv x1) cimas))wceq cxps (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . co (ccnv (cmpt2 (λ x3 x4 . cfv (cv x1) cbs) (λ x3 x4 . cfv (cv x2) cbs) (λ x3 x4 . ccnv (co (csn (cv x3)) (csn (cv x4)) ccda)))) (co (cfv (cv x1) csca) (ccnv (co (csn (cv x1)) (csn (cv x2)) ccda)) cprds) cimas))wceq cmre (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wa (wcel (cv x1) (cv x2)) (wral (λ x3 . wne (cv x3) c0wcel (cint (cv x3)) (cv x2)) (λ x3 . cpw (cv x2)))) (λ x2 . cpw (cpw (cv x1)))))wceq cmrc (cmpt (λ x1 . cuni (crn cmre)) (λ x1 . cmpt (λ x2 . cpw (cuni (cv x1))) (λ x2 . cint (crab (λ x3 . wss (cv x2) (cv x3)) (λ x3 . cv x1)))))wceq cmri (cmpt (λ x1 . cuni (crn cmre)) (λ x1 . crab (λ x2 . wral (λ x3 . wn (wcel (cv x3) (cfv (cdif (cv x2) (csn (cv x3))) (cfv (cv x1) cmrc)))) (λ x3 . cv x2)) (λ x2 . cpw (cuni (cv x1)))))wceq cacs (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wex (λ x3 . wa (wf (cpw (cv x1)) (cpw (cv x1)) (cv x3)) (wral (λ x4 . wb (wcel (cv x4) (cv x2)) (wss (cuni (cima (cv x3) (cin (cpw (cv x4)) cfn))) (cv x4))) (λ x4 . cpw (cv x1))))) (λ x2 . cfv (cv x1) cmre)))wceq ccat (cab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wsbc (λ x4 . wral (λ x5 . wa (wrex (λ x6 . wral (λ x7 . wa (wral (λ x8 . wceq (co (cv x6) (cv x8) (co (cop (cv x7) (cv x5)) (cv x5) (cv x4))) (cv x8)) (λ x8 . co (cv x7) (cv x5) (cv x3))) (wral (λ x8 . wceq (co (cv x8) (cv x6) (co (cop (cv x5) (cv x5)) (cv x7) (cv x4))) (cv x8)) (λ x8 . co (cv x5) (cv x7) (cv x3)))) (λ x7 . cv x2)) (λ x6 . co (cv x5) (cv x5) (cv x3))) (wral (λ x6 . wral (λ x7 . wral (λ x8 . wral (λ x9 . wa (wcel (co (cv x9) (cv x8) (co (cop (cv x5) (cv x6)) (cv x7) (cv x4))) (co (cv x5) (cv x7) (cv x3))) (wral (λ x10 . wral (λ x11 . wceq (co (co (cv x11) (cv x9) (co (cop (cv x6) (cv x7)) (cv x10) (cv x4))) (cv x8) (co (cop (cv x5) (cv x6)) (cv x10) (cv x4))) (co (cv x11) (co (cv x9) (cv x8) (co (cop (cv x5) (cv x6)) (cv x7) (cv x4))) (co (cop (cv x5) (cv x7)) (cv x10) (cv x4)))) (λ x11 . co (cv x7) (cv x10) (cv x3))) (λ x10 . cv x2))) (λ x9 . co (cv x6) (cv x7) (cv x3))) (λ x8 . co (cv x5) (cv x6) (cv x3))) (λ x7 . cv x2)) (λ x6 . cv x2))) (λ x5 . cv x2)) (cfv (cv x1) cco)) (cfv (cv x1) chom)) (cfv (cv x1) cbs)))wceq ccid (cmpt (λ x1 . ccat) (λ x1 . csb (cfv (cv x1) cbs) (λ x2 . csb (cfv (cv x1) chom) (λ x3 . csb (cfv (cv x1) cco) (λ x4 . cmpt (λ x5 . cv x2) (λ x5 . crio (λ x6 . wral (λ x7 . wa (wral (λ x8 . wceq (co (cv x6) (cv x8) (co (cop (cv x7) (cv x5)) (cv x5) (cv x4))) (cv x8)) (λ x8 . co (cv x7) (cv x5) (cv x3))) (wral (λ x8 . wceq (co (cv x8) (cv x6) (co (cop (cv x5) (cv x5)) (cv x7) (cv x4))) (cv x8)) (λ x8 . co (cv x5) (cv x7) (cv x3)))) (λ x7 . cv x2)) (λ x6 . co (cv x5) (cv x5) (cv x3))))))))wceq chomf (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . co (cv x2) (cv x3) (cfv (cv x1) chom))))wceq ccomf (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cxp (cfv (cv x1) cbs) (cfv (cv x1) cbs)) (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . cmpt2 (λ x4 x5 . co (cfv (cv x2) c2nd) (cv x3) (cfv (cv x1) chom)) (λ x4 x5 . cfv (cv x2) (cfv (cv x1) chom)) (λ x4 x5 . co (cv x4) (cv x5) (co (cv x2) (cv x3) (cfv (cv x1) cco))))))wceq coppc (cmpt (λ x1 . cvv) (λ x1 . co (co (cv x1) (cop (cfv cnx chom) (ctpos (cfv (cv x1) chom))) csts) (cop (cfv cnx cco) (cmpt2 (λ x2 x3 . cxp (cfv (cv x1) cbs) (cfv (cv x1) cbs)) (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . ctpos (co (cop (cv x3) (cfv (cv x2) c2nd)) (cfv (cv x2) c1st) (cfv (cv x1) cco))))) csts))wceq cmon (cmpt (λ x1 . ccat) (λ x1 . csb (cfv (cv x1) cbs) (λ x2 . csb (cfv (cv x1) chom) (λ x3 . cmpt2 (λ x4 x5 . cv x2) (λ x4 x5 . cv x2) (λ x4 x5 . crab (λ x6 . wral (λ x7 . wfun (ccnv (cmpt (λ x8 . co (cv x7) (cv x4) (cv x3)) (λ x8 . co (cv x6) (cv x8) (co (cop (cv x7) (cv x4)) (cv x5) (cfv (cv x1) cco)))))) (λ x7 . cv x2)) (λ x6 . co (cv x4) (cv x5) (cv x3)))))))wceq cepi (cmpt (λ x1 . ccat) (λ x1 . ctpos (cfv (cfv (cv x1) coppc) cmon)))wceq csect (cmpt (λ x1 . ccat) (λ x1 . cmpt2 (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . copab (λ x4 x5 . wsbc (λ x6 . wa (wa (wcel (cv x4) (co (cv x2) (cv x3) (cv x6))) (wcel (cv x5) (co (cv x3) (cv x2) (cv x6)))) (wceq (co (cv x5) (cv x4) (co (cop (cv x2) (cv x3)) (cv x2) (cfv (cv x1) cco))) (cfv (cv x2) (cfv (cv x1) ccid)))) (cfv (cv x1) chom)))))x0)x0
Theorem df_ordt : wceq cordt (cmpt (λ x0 . cvv) (λ x0 . cfv (cfv (cun (csn (cdm (cv x0))) (crn (cun (cmpt (λ x1 . cdm (cv x0)) (λ x1 . crab (λ x2 . wn (wbr (cv x2) (cv x1) (cv x0))) (λ x2 . cdm (cv x0)))) (cmpt (λ x1 . cdm (cv x0)) (λ x1 . crab (λ x2 . wn (wbr (cv x1) (cv x2) (cv x0))) (λ x2 . cdm (cv x0))))))) cfi) ctg)) (proof)
Theorem df_xrs : wceq cxrs (cun (ctp (cop (cfv cnx cbs) cxr) (cop (cfv cnx cplusg) cxad) (cop (cfv cnx cmulr) cxmu)) (ctp (cop (cfv cnx cts) (cfv cle cordt)) (cop (cfv cnx cple) cle) (cop (cfv cnx cds) (cmpt2 (λ x0 x1 . cxr) (λ x0 x1 . cxr) (λ x0 x1 . cif (wbr (cv x0) (cv x1) cle) (co (cv x1) (cxne (cv x0)) cxad) (co (cv x0) (cxne (cv x1)) cxad)))))) (proof)
Theorem df_qtop : wceq cqtop (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . crab (λ x2 . wcel (cin (cima (ccnv (cv x1)) (cv x2)) (cuni (cv x0))) (cv x0)) (λ x2 . cpw (cima (cv x1) (cuni (cv x0)))))) (proof)
Theorem df_imas : wceq cimas (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . csb (cfv (cv x1) cbs) (λ x2 . cun (cun (ctp (cop (cfv cnx cbs) (crn (cv x0))) (cop (cfv cnx cplusg) (ciun (λ x3 . cv x2) (λ x3 . ciun (λ x4 . cv x2) (λ x4 . csn (cop (cop (cfv (cv x3) (cv x0)) (cfv (cv x4) (cv x0))) (cfv (co (cv x3) (cv x4) (cfv (cv x1) cplusg)) (cv x0))))))) (cop (cfv cnx cmulr) (ciun (λ x3 . cv x2) (λ x3 . ciun (λ x4 . cv x2) (λ x4 . csn (cop (cop (cfv (cv x3) (cv x0)) (cfv (cv x4) (cv x0))) (cfv (co (cv x3) (cv x4) (cfv (cv x1) cmulr)) (cv x0)))))))) (ctp (cop (cfv cnx csca) (cfv (cv x1) csca)) (cop (cfv cnx cvsca) (ciun (λ x3 . cv x2) (λ x3 . cmpt2 (λ x4 x5 . cfv (cfv (cv x1) csca) cbs) (λ x4 x5 . csn (cfv (cv x3) (cv x0))) (λ x4 x5 . cfv (co (cv x4) (cv x3) (cfv (cv x1) cvsca)) (cv x0))))) (cop (cfv cnx cip) (ciun (λ x3 . cv x2) (λ x3 . ciun (λ x4 . cv x2) (λ x4 . csn (cop (cop (cfv (cv x3) (cv x0)) (cfv (cv x4) (cv x0))) (co (cv x3) (cv x4) (cfv (cv x1) cip))))))))) (ctp (cop (cfv cnx cts) (co (cfv (cv x1) ctopn) (cv x0) cqtop)) (cop (cfv cnx cple) (ccom (ccom (cv x0) (cfv (cv x1) cple)) (ccnv (cv x0)))) (cop (cfv cnx cds) (cmpt2 (λ x3 x4 . crn (cv x0)) (λ x3 x4 . crn (cv x0)) (λ x3 x4 . cinf (ciun (λ x5 . cn) (λ x5 . crn (cmpt (λ x6 . crab (λ x7 . w3a (wceq (cfv (cfv (cfv c1 (cv x7)) c1st) (cv x0)) (cv x3)) (wceq (cfv (cfv (cfv (cv x5) (cv x7)) c2nd) (cv x0)) (cv x4)) (wral (λ x8 . wceq (cfv (cfv (cfv (cv x8) (cv x7)) c2nd) (cv x0)) (cfv (cfv (cfv (co (cv x8) c1 caddc) (cv x7)) c1st) (cv x0))) (λ x8 . co c1 (co (cv x5) c1 cmin) cfz))) (λ x7 . co (cxp (cv x2) (cv x2)) (co c1 (cv x5) cfz) cmap)) (λ x6 . co cxrs (ccom (cfv (cv x1) cds) (cv x6)) cgsu)))) cxr clt))))))) (proof)
Theorem df_qus : wceq cqus (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . co (cmpt (λ x2 . cfv (cv x0) cbs) (λ x2 . cec (cv x2) (cv x1))) (cv x0) cimas)) (proof)
Theorem df_xps : wceq cxps (cmpt2 (λ x0 x1 . cvv) (λ x0 x1 . cvv) (λ x0 x1 . co (ccnv (cmpt2 (λ x2 x3 . cfv (cv x0) cbs) (λ x2 x3 . cfv (cv x1) cbs) (λ x2 x3 . ccnv (co (csn (cv x2)) (csn (cv x3)) ccda)))) (co (cfv (cv x0) csca) (ccnv (co (csn (cv x0)) (csn (cv x1)) ccda)) cprds) cimas)) (proof)
Theorem df_mre : wceq cmre (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wa (wcel (cv x0) (cv x1)) (wral (λ x2 . wne (cv x2) c0wcel (cint (cv x2)) (cv x1)) (λ x2 . cpw (cv x1)))) (λ x1 . cpw (cpw (cv x0))))) (proof)
Theorem df_mrc : wceq cmrc (cmpt (λ x0 . cuni (crn cmre)) (λ x0 . cmpt (λ x1 . cpw (cuni (cv x0))) (λ x1 . cint (crab (λ x2 . wss (cv x1) (cv x2)) (λ x2 . cv x0))))) (proof)
Theorem df_mri : wceq cmri (cmpt (λ x0 . cuni (crn cmre)) (λ x0 . crab (λ x1 . wral (λ x2 . wn (wcel (cv x2) (cfv (cdif (cv x1) (csn (cv x2))) (cfv (cv x0) cmrc)))) (λ x2 . cv x1)) (λ x1 . cpw (cuni (cv x0))))) (proof)
Theorem df_acs : wceq cacs (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wex (λ x2 . wa (wf (cpw (cv x0)) (cpw (cv x0)) (cv x2)) (wral (λ x3 . wb (wcel (cv x3) (cv x1)) (wss (cuni (cima (cv x2) (cin (cpw (cv x3)) cfn))) (cv x3))) (λ x3 . cpw (cv x0))))) (λ x1 . cfv (cv x0) cmre))) (proof)
Theorem df_cat : wceq ccat (cab (λ x0 . wsbc (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wral (λ x4 . wa (wrex (λ x5 . wral (λ x6 . wa (wral (λ x7 . wceq (co (cv x5) (cv x7) (co (cop (cv x6) (cv x4)) (cv x4) (cv x3))) (cv x7)) (λ x7 . co (cv x6) (cv x4) (cv x2))) (wral (λ x7 . wceq (co (cv x7) (cv x5) (co (cop (cv x4) (cv x4)) (cv x6) (cv x3))) (cv x7)) (λ x7 . co (cv x4) (cv x6) (cv x2)))) (λ x6 . cv x1)) (λ x5 . co (cv x4) (cv x4) (cv x2))) (wral (λ x5 . wral (λ x6 . wral (λ x7 . wral (λ x8 . wa (wcel (co (cv x8) (cv x7) (co (cop (cv x4) (cv x5)) (cv x6) (cv x3))) (co (cv x4) (cv x6) (cv x2))) (wral (λ x9 . wral (λ x10 . wceq (co (co (cv x10) (cv x8) (co (cop (cv x5) (cv x6)) (cv x9) (cv x3))) (cv x7) (co (cop (cv x4) (cv x5)) (cv x9) (cv x3))) (co (cv x10) (co (cv x8) (cv x7) (co (cop (cv x4) (cv x5)) (cv x6) (cv x3))) (co (cop (cv x4) (cv x6)) (cv x9) (cv x3)))) (λ x10 . co (cv x6) (cv x9) (cv x2))) (λ x9 . cv x1))) (λ x8 . co (cv x5) (cv x6) (cv x2))) (λ x7 . co (cv x4) (cv x5) (cv x2))) (λ x6 . cv x1)) (λ x5 . cv x1))) (λ x4 . cv x1)) (cfv (cv x0) cco)) (cfv (cv x0) chom)) (cfv (cv x0) cbs))) (proof)
Theorem df_cid : wceq ccid (cmpt (λ x0 . ccat) (λ x0 . csb (cfv (cv x0) cbs) (λ x1 . csb (cfv (cv x0) chom) (λ x2 . csb (cfv (cv x0) cco) (λ x3 . cmpt (λ x4 . cv x1) (λ x4 . crio (λ x5 . wral (λ x6 . wa (wral (λ x7 . wceq (co (cv x5) (cv x7) (co (cop (cv x6) (cv x4)) (cv x4) (cv x3))) (cv x7)) (λ x7 . co (cv x6) (cv x4) (cv x2))) (wral (λ x7 . wceq (co (cv x7) (cv x5) (co (cop (cv x4) (cv x4)) (cv x6) (cv x3))) (cv x7)) (λ x7 . co (cv x4) (cv x6) (cv x2)))) (λ x6 . cv x1)) (λ x5 . co (cv x4) (cv x4) (cv x2)))))))) (proof)
Theorem df_homf : wceq chomf (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cfv (cv x0) cbs) (λ x1 x2 . cfv (cv x0) cbs) (λ x1 x2 . co (cv x1) (cv x2) (cfv (cv x0) chom)))) (proof)
Theorem df_comf : wceq ccomf (cmpt (λ x0 . cvv) (λ x0 . cmpt2 (λ x1 x2 . cxp (cfv (cv x0) cbs) (cfv (cv x0) cbs)) (λ x1 x2 . cfv (cv x0) cbs) (λ x1 x2 . cmpt2 (λ x3 x4 . co (cfv (cv x1) c2nd) (cv x2) (cfv (cv x0) chom)) (λ x3 x4 . cfv (cv x1) (cfv (cv x0) chom)) (λ x3 x4 . co (cv x3) (cv x4) (co (cv x1) (cv x2) (cfv (cv x0) cco)))))) (proof)
Theorem df_oppc : wceq coppc (cmpt (λ x0 . cvv) (λ x0 . co (co (cv x0) (cop (cfv cnx chom) (ctpos (cfv (cv x0) chom))) csts) (cop (cfv cnx cco) (cmpt2 (λ x1 x2 . cxp (cfv (cv x0) cbs) (cfv (cv x0) cbs)) (λ x1 x2 . cfv (cv x0) cbs) (λ x1 x2 . ctpos (co (cop (cv x2) (cfv (cv x1) c2nd)) (cfv (cv x1) c1st) (cfv (cv x0) cco))))) csts)) (proof)
Theorem df_mon : wceq cmon (cmpt (λ x0 . ccat) (λ x0 . csb (cfv (cv x0) cbs) (λ x1 . csb (cfv (cv x0) chom) (λ x2 . cmpt2 (λ x3 x4 . cv x1) (λ x3 x4 . cv x1) (λ x3 x4 . crab (λ x5 . wral (λ x6 . wfun (ccnv (cmpt (λ x7 . co (cv x6) (cv x3) (cv x2)) (λ x7 . co (cv x5) (cv x7) (co (cop (cv x6) (cv x3)) (cv x4) (cfv (cv x0) cco)))))) (λ x6 . cv x1)) (λ x5 . co (cv x3) (cv x4) (cv x2))))))) (proof)
Theorem df_epi : wceq cepi (cmpt (λ x0 . ccat) (λ x0 . ctpos (cfv (cfv (cv x0) coppc) cmon))) (proof)
Theorem df_sect : wceq csect (cmpt (λ x0 . ccat) (λ x0 . cmpt2 (λ x1 x2 . cfv (cv x0) cbs) (λ x1 x2 . cfv (cv x0) cbs) (λ x1 x2 . copab (λ x3 x4 . wsbc (λ x5 . wa (wa (wcel (cv x3) (co (cv x1) (cv x2) (cv x5))) (wcel (cv x4) (co (cv x2) (cv x1) (cv x5)))) (wceq (co (cv x4) (cv x3) (co (cop (cv x1) (cv x2)) (cv x1) (cfv (cv x0) cco))) (cfv (cv x1) (cfv (cv x0) ccid)))) (cfv (cv x0) chom))))) (proof)