Search for blocks/addresses/...
Proofgold Asset
asset id
080a71de48525641cb399f7967018ef349d29c864a3689485576218e1c2901f5
asset hash
4bb267c7edc1cab6335b472dfd99f34d30b06e58c684f6e815af379b00073553
bday / block
4672
tx
ddc14..
preasset
doc published by
PrGxv..
Definition
a813b..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
λ x4 :
ι →
ι → ι
.
λ x5 x6 .
∀ x7 :
ι →
ι → ο
.
x7
x1
x3
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
x7
x8
x9
⟶
x7
(
x2
x8
)
(
x4
x8
x9
)
)
⟶
x7
x5
x6
Param
explicit_Nats
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Known
explicit_Nats_ind
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
prim1
x4
x0
⟶
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
prim1
x4
x0
⟶
x3
x4
Theorem
89666..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
a813b..
x0
x1
x2
x3
x4
x5
x7
⟶
x6
)
⟶
x6
(proof)
Known
explicit_Nats_E
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 : ο .
(
explicit_Nats
x0
x1
x2
⟶
prim1
x1
x0
⟶
(
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x4
)
x0
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
x2
x4
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 :
ι → ο
.
x4
x1
⟶
(
∀ x5 .
x4
x5
⟶
x4
(
x2
x5
)
)
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x5
)
⟶
x3
)
⟶
explicit_Nats
x0
x1
x2
⟶
x3
Definition
False
:=
∀ x0 : ο .
x0
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
45784..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
a813b..
x0
x1
x2
x3
x4
x1
x5
⟶
x5
=
x3
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
0bfdd..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
a813b..
x0
x1
x2
x3
x4
(
x2
x5
)
x6
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x6
=
x4
x5
x8
)
(
a813b..
x0
x1
x2
x3
x4
x5
x8
)
⟶
x7
)
⟶
x7
(proof)
Theorem
f1675..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 x7 .
a813b..
x0
x1
x2
x3
x4
x5
x6
⟶
a813b..
x0
x1
x2
x3
x4
x5
x7
⟶
x6
=
x7
(proof)
Definition
explicit_Nats_primrec
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
λ x4 :
ι →
ι → ι
.
λ x5 .
prim0
(
a813b..
x0
x1
x2
x3
x4
x5
)
Theorem
89666..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 : ο .
(
∀ x7 .
a813b..
x0
x1
x2
x3
x4
x5
x7
⟶
x6
)
⟶
x6
(proof)
Known
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
1347b..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
prim1
x5
x0
⟶
a813b..
x0
x1
x2
x3
x4
x5
(
explicit_Nats_primrec
x0
x1
x2
x3
x4
x5
)
(proof)
Theorem
explicit_Nats_primrec_base
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
explicit_Nats_primrec
x0
x1
x2
x3
x4
x1
=
x3
(proof)
Theorem
explicit_Nats_primrec_S
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Nats_primrec
x0
x1
x2
x3
x4
(
x2
x5
)
=
x4
x5
(
explicit_Nats_primrec
x0
x1
x2
x3
x4
x5
)
(proof)
Definition
explicit_Nats_zero_plus
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
x4
(
λ x5 .
x2
)
x3
Definition
explicit_Nats_zero_mult
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
x1
(
λ x5 .
explicit_Nats_zero_plus
x0
x1
x2
x4
)
x3
Theorem
explicit_Nats_zero_plus_0L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
explicit_Nats_zero_plus
x0
x1
x2
x1
x3
=
x3
(proof)
Theorem
explicit_Nats_zero_plus_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
explicit_Nats_zero_plus
x0
x1
x2
(
x2
x3
)
x4
=
x2
(
explicit_Nats_zero_plus
x0
x1
x2
x3
x4
)
(proof)
Theorem
explicit_Nats_zero_mult_0L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
explicit_Nats_zero_mult
x0
x1
x2
x1
x3
=
x1
(proof)
Theorem
explicit_Nats_zero_mult_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
explicit_Nats_zero_mult
x0
x1
x2
(
x2
x3
)
x4
=
explicit_Nats_zero_plus
x0
x1
x2
x4
(
explicit_Nats_zero_mult
x0
x1
x2
x3
x4
)
(proof)
Definition
explicit_Nats_one_plus
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
(
x2
x4
)
(
λ x5 .
x2
)
x3
Definition
explicit_Nats_one_mult
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
x4
(
λ x5 .
explicit_Nats_one_plus
x0
x1
x2
x4
)
x3
Definition
explicit_Nats_one_exp
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
explicit_Nats_primrec
x0
x1
x2
x3
(
λ x4 .
explicit_Nats_one_mult
x0
x1
x2
x3
)
Theorem
explicit_Nats_one_plus_1L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
explicit_Nats_one_plus
x0
x1
x2
x1
x3
=
x2
x3
(proof)
Theorem
explicit_Nats_one_plus_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
explicit_Nats_one_plus
x0
x1
x2
(
x2
x3
)
x4
=
x2
(
explicit_Nats_one_plus
x0
x1
x2
x3
x4
)
(proof)
Theorem
explicit_Nats_one_mult_1L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
explicit_Nats_one_mult
x0
x1
x2
x1
x3
=
x3
(proof)
Theorem
explicit_Nats_one_mult_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
explicit_Nats_one_mult
x0
x1
x2
(
x2
x3
)
x4
=
explicit_Nats_one_plus
x0
x1
x2
x4
(
explicit_Nats_one_mult
x0
x1
x2
x3
x4
)
(proof)
Theorem
explicit_Nats_one_exp_1L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
explicit_Nats_one_exp
x0
x1
x2
x3
x1
=
x3
(proof)
Theorem
explicit_Nats_one_exp_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
explicit_Nats_one_exp
x0
x1
x2
x3
(
x2
x4
)
=
explicit_Nats_one_mult
x0
x1
x2
x3
(
explicit_Nats_one_exp
x0
x1
x2
x3
x4
)
(proof)