Search for blocks/addresses/...

Proofgold Asset

asset id
0a4c87fc33f342b3d4cda11a0f20c123f5fa474ef7c8c9a3676b0eba5b2da0c0
asset hash
476449b3c49914c1f09eb4d15fa41522e806d14fc0de3ca26a9b746b45389357
bday / block
12264
tx
37a20..
preasset
doc published by PrGxv..
Param SNoSNo : ιο
Param SNoLeSNoLe : ιιο
Param add_SNoadd_SNo : ιιι
Param minus_SNominus_SNo : ιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param SNoLtSNoLt : ιιο
Known SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known add_SNo_minus_Lt1add_SNo_minus_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 (minus_SNo x1)) x2SNoLt x0 (add_SNo x2 x1)
Known add_SNo_minus_R2'add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 (minus_SNo x1)) x1 = x0
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Theorem 05aff.. : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x0 (minus_SNo x1)) x2SNoLe x0 (add_SNo x2 x1) (proof)
Known add_SNo_minus_Lt1badd_SNo_minus_Lt1b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 (add_SNo x2 x1)SNoLt (add_SNo x0 (minus_SNo x1)) x2
Known add_SNo_minus_R2add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 x1) (minus_SNo x1) = x0
Theorem add_SNo_minus_Le1badd_SNo_minus_Le1b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 (add_SNo x2 x1)SNoLe (add_SNo x0 (minus_SNo x1)) x2 (proof)
Known add_SNo_minus_Lt2add_SNo_minus_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x2 (add_SNo x0 (minus_SNo x1))SNoLt (add_SNo x2 x1) x0
Theorem add_SNo_minus_Le2add_SNo_minus_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x2 (add_SNo x0 (minus_SNo x1))SNoLe (add_SNo x2 x1) x0 (proof)
Known add_SNo_minus_Lt2badd_SNo_minus_Lt2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x2 x1) x0SNoLt x2 (add_SNo x0 (minus_SNo x1))
Theorem add_SNo_minus_Le2badd_SNo_minus_Le2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x2 x1) x0SNoLe x2 (add_SNo x0 (minus_SNo x1)) (proof)
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Param ordsuccordsucc : ιι
Param mul_SNomul_SNo : ιιι
Definition exp_SNo_natexp_SNo_nat := λ x0 . nat_primrec 1 (λ x1 . mul_SNo x0)
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Theorem exp_SNo_nat_0exp_SNo_nat_0 : ∀ x0 . SNo x0exp_SNo_nat x0 0 = 1 (proof)
Param nat_pnat_p : ιο
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Theorem exp_SNo_nat_Sexp_SNo_nat_S : ∀ x0 . SNo x0∀ x1 . nat_p x1exp_SNo_nat x0 (ordsucc x1) = mul_SNo x0 (exp_SNo_nat x0 x1) (proof)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known SNo_1SNo_1 : SNo 1
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Theorem SNo_exp_SNo_natSNo_exp_SNo_nat : ∀ x0 . SNo x0∀ x1 . nat_p x1SNo (exp_SNo_nat x0 x1) (proof)
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known nat_1nat_1 : nat_p 1
Param omegaomega : ι
Param mul_natmul_nat : ιιι
Known mul_nat_mul_SNomul_nat_mul_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_SNo x0 x1
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known mul_nat_pmul_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (mul_nat x0 x1)
Theorem nat_exp_SNo_natnat_exp_SNo_nat : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (exp_SNo_nat x0 x1) (proof)
Param eps_eps_ : ιι
Known eps_0_1eps_0_1 : eps_ 0 = 1
Known SNo_2SNo_2 : SNo 2
Known mul_SNo_oneRmul_SNo_oneR : ∀ x0 . SNo x0mul_SNo x0 1 = x0
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known add_SNo_1_1_2add_SNo_1_1_2 : add_SNo 1 1 = 2
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known eps_ordsucc_half_addeps_ordsucc_half_add : ∀ x0 . nat_p x0add_SNo (eps_ (ordsucc x0)) (eps_ (ordsucc x0)) = eps_ x0
Known SNo_eps_SNo_eps_ : ∀ x0 . x0omegaSNo (eps_ x0)
Known nat_ordsuccnat_ordsucc : ∀ x0 . nat_p x0nat_p (ordsucc x0)
Theorem mul_SNo_eps_power_2mul_SNo_eps_power_2 : ∀ x0 . nat_p x0mul_SNo (eps_ x0) (exp_SNo_nat 2 x0) = 1 (proof)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Theorem mul_SNo_eps_power_2'mul_SNo_eps_power_2 : ∀ x0 . nat_p x0mul_SNo (exp_SNo_nat 2 x0) (eps_ x0) = 1 (proof)
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Param add_natadd_nat : ιιι
Known add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known add_nat_padd_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1)
Theorem exp_SNo_nat_mul_addexp_SNo_nat_mul_add : ∀ x0 . SNo x0∀ x1 . nat_p x1∀ x2 . nat_p x2mul_SNo (exp_SNo_nat x0 x1) (exp_SNo_nat x0 x2) = exp_SNo_nat x0 (add_SNo x1 x2) (proof)
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Theorem exp_SNo_nat_mul_add'exp_SNo_nat_mul_add : ∀ x0 . SNo x0∀ x1 . x1omega∀ x2 . x2omegamul_SNo (exp_SNo_nat x0 x1) (exp_SNo_nat x0 x2) = exp_SNo_nat x0 (add_SNo x1 x2) (proof)
Known SNoLt_0_1SNoLt_0_1 : SNoLt 0 1
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Known pos_mul_SNo_Ltpos_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNoLt 0 x0SNo x1SNo x2SNoLt x1 x2SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)
Known SNo_0SNo_0 : SNo 0
Theorem exp_SNo_nat_posexp_SNo_nat_pos : ∀ x0 . SNo x0SNoLt 0 x0∀ x1 . nat_p x1SNoLt 0 (exp_SNo_nat x0 x1) (proof)
Known SNoLt_trichotomy_or_impredSNoLt_trichotomy_or_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (SNoLt x0 x1x2)(x0 = x1x2)(SNoLt x1 x0x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known neg_mul_SNo_Ltneg_mul_SNo_Lt : ∀ x0 x1 x2 . SNo x0SNoLt x0 0SNo x1SNo x2SNoLt x2 x1SNoLt (mul_SNo x0 x1) (mul_SNo x0 x2)
Theorem mul_SNo_nonzero_cancelmul_SNo_nonzero_cancel_L : ∀ x0 x1 x2 . SNo x0(x0 = 0∀ x3 : ο . x3)SNo x1SNo x2mul_SNo x0 x1 = mul_SNo x0 x2x1 = x2 (proof)
Known SNoLt_0_2SNoLt_0_2 : SNoLt 0 2
Known add_SNo_In_omegaadd_SNo_In_omega : ∀ x0 . x0omega∀ x1 . x1omegaadd_SNo x0 x1omega
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Theorem mul_SNo_eps_eps_add_SNomul_SNo_eps_eps_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_SNo (eps_ x0) (eps_ x1) = eps_ (add_SNo x0 x1) (proof)