Search for blocks/addresses/...
Proofgold Asset
asset id
0aa8d8e978c2205e002959964b489d52884be925968f548b3a7c96d4d287c48f
asset hash
a19dd30a742690df08e2048f6a9c108d4f8c83e92e40fcf977b5f554af1efb98
bday / block
4929
tx
e457f..
preasset
doc published by
Pr6Pc..
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
encode_b
encode_b
:
ι
→
CT2
ι
Definition
pack_b_b
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
encode_b
x0
x1
)
(
encode_b
x0
x2
)
)
)
Param
ap
ap
:
ι
→
ι
→
ι
Known
tuple_3_0_eq
tuple_3_0_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
0
=
x0
Theorem
pack_b_b_0_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
x0
=
pack_b_b
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_b_b_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
x0
=
ap
(
pack_b_b
x0
x1
x2
)
0
(proof)
Param
decode_b
decode_b
:
ι
→
ι
→
ι
→
ι
Known
tuple_3_1_eq
tuple_3_1_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
1
=
x1
Known
decode_encode_b
decode_encode_b
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
decode_b
(
encode_b
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
pack_b_b_1_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
x0
=
pack_b_b
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
decode_b
(
ap
x0
1
)
x4
x5
(proof)
Theorem
pack_b_b_1_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
decode_b
(
ap
(
pack_b_b
x0
x1
x2
)
1
)
x3
x4
(proof)
Known
tuple_3_2_eq
tuple_3_2_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
2
=
x2
Theorem
pack_b_b_2_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
x0
=
pack_b_b
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x3
x4
x5
=
decode_b
(
ap
x0
2
)
x4
x5
(proof)
Theorem
pack_b_b_2_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
=
decode_b
(
ap
(
pack_b_b
x0
x1
x2
)
2
)
x3
x4
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
pack_b_b_inj
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
pack_b_b
x0
x2
x4
=
pack_b_b
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x5
x6
x7
)
(proof)
Known
encode_b_ext
encode_b_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
encode_b
x0
x1
=
encode_b
x0
x2
Theorem
pack_b_b_ext
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x5
x6
=
x2
x5
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x4
x5
x6
)
⟶
pack_b_b
x0
x1
x3
=
pack_b_b
x0
x2
x4
(proof)
Definition
struct_b_b
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x4
x5
x6
∈
x2
)
⟶
x1
(
pack_b_b
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_b_b_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
∈
x0
)
⟶
struct_b_b
(
pack_b_b
x0
x1
x2
)
(proof)
Theorem
pack_struct_b_b_E1
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
struct_b_b
(
pack_b_b
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
∈
x0
(proof)
Theorem
pack_struct_b_b_E2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
struct_b_b
(
pack_b_b
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
∈
x0
(proof)
Theorem
struct_b_b_eta
:
∀ x0 .
struct_b_b
x0
⟶
x0
=
pack_b_b
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(proof)
Definition
unpack_b_b_i
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→ ι
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
Theorem
unpack_b_b_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
x3
x6
x7
=
x5
x6
x7
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_b_b_i
(
pack_b_b
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_b_b_o
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→ ο
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
Theorem
unpack_b_b_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
x3
x6
x7
=
x5
x6
x7
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_b_b_o
(
pack_b_b
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
pack_b_u
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 :
ι → ι
.
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
encode_b
x0
x1
)
(
lam
x0
x2
)
)
)
Theorem
pack_b_u_0_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
x0
=
pack_b_u
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_b_u_0_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
x0
=
ap
(
pack_b_u
x0
x1
x2
)
0
(proof)
Theorem
pack_b_u_1_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
x0
=
pack_b_u
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
decode_b
(
ap
x0
1
)
x4
x5
(proof)
Theorem
pack_b_u_1_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
decode_b
(
ap
(
pack_b_u
x0
x1
x2
)
1
)
x3
x4
(proof)
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Theorem
pack_b_u_2_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
x0
=
pack_b_u
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
x3
x4
=
ap
(
ap
x0
2
)
x4
(proof)
Theorem
pack_b_u_2_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
x2
x3
=
ap
(
ap
(
pack_b_u
x0
x1
x2
)
2
)
x3
(proof)
Theorem
pack_b_u_inj
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
pack_b_u
x0
x2
x4
=
pack_b_u
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
∀ x6 .
x6
∈
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Theorem
pack_b_u_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x5
x6
=
x2
x5
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
x3
x5
=
x4
x5
)
⟶
pack_b_u
x0
x1
x3
=
pack_b_u
x0
x2
x4
(proof)
Definition
struct_b_u
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
x4
x5
∈
x2
)
⟶
x1
(
pack_b_u
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_b_u_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
⟶
struct_b_u
(
pack_b_u
x0
x1
x2
)
(proof)
Theorem
pack_struct_b_u_E1
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
struct_b_u
(
pack_b_u
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
∈
x0
(proof)
Theorem
pack_struct_b_u_E2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
struct_b_u
(
pack_b_u
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
(proof)
Theorem
struct_b_u_eta
:
∀ x0 .
struct_b_u
x0
⟶
x0
=
pack_b_u
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
ap
(
ap
x0
2
)
)
(proof)
Definition
unpack_b_u_i
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→ ι
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
ap
(
ap
x0
2
)
)
Theorem
unpack_b_u_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_b_u_i
(
pack_b_u
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_b_u_o
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→ ο
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
ap
(
ap
x0
2
)
)
Theorem
unpack_b_u_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_b_u_o
(
pack_b_u
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Param
encode_r
encode_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
pack_b_r
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 :
ι →
ι → ο
.
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
encode_b
x0
x1
)
(
encode_r
x0
x2
)
)
)
Theorem
pack_b_r_0_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
x0
=
pack_b_r
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_b_r_0_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
x3
x0
(
ap
(
pack_b_r
x0
x1
x2
)
0
)
⟶
x3
(
ap
(
pack_b_r
x0
x1
x2
)
0
)
x0
(proof)
Theorem
pack_b_r_1_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
x0
=
pack_b_r
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
decode_b
(
ap
x0
1
)
x4
x5
(proof)
Theorem
pack_b_r_1_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
decode_b
(
ap
(
pack_b_r
x0
x1
x2
)
1
)
x3
x4
(proof)
Param
decode_r
decode_r
:
ι
→
ι
→
ι
→
ο
Known
decode_encode_r
decode_encode_r
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
decode_r
(
encode_r
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
pack_b_r_2_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
x0
=
pack_b_r
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x3
x4
x5
=
decode_r
(
ap
x0
2
)
x4
x5
(proof)
Theorem
pack_b_r_2_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
=
decode_r
(
ap
(
pack_b_r
x0
x1
x2
)
2
)
x3
x4
(proof)
Theorem
pack_b_r_inj
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
pack_b_r
x0
x2
x4
=
pack_b_r
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x5
x6
x7
)
(proof)
Param
iff
iff
:
ο
→
ο
→
ο
Known
encode_r_ext
encode_r_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
encode_r
x0
x1
=
encode_r
x0
x2
Theorem
pack_b_r_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x5
x6
=
x2
x5
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
iff
(
x3
x5
x6
)
(
x4
x5
x6
)
)
⟶
pack_b_r
x0
x1
x3
=
pack_b_r
x0
x2
x4
(proof)
Definition
struct_b_r
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 :
ι →
ι → ο
.
x1
(
pack_b_r
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_b_r_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ο
.
struct_b_r
(
pack_b_r
x0
x1
x2
)
(proof)
Theorem
pack_struct_b_r_E1
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
struct_b_r
(
pack_b_r
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
∈
x0
(proof)
Known
iff_refl
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
struct_b_r_eta
:
∀ x0 .
struct_b_r
x0
⟶
x0
=
pack_b_r
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_r
(
ap
x0
2
)
)
(proof)
Definition
unpack_b_r_i
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_r
(
ap
x0
2
)
)
Theorem
unpack_b_r_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_b_r_i
(
pack_b_r
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_b_r_o
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_r
(
ap
x0
2
)
)
Theorem
unpack_b_r_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
iff
(
x3
x6
x7
)
(
x5
x6
x7
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_b_r_o
(
pack_b_r
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
pack_b_p
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 :
ι → ο
.
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
encode_b
x0
x1
)
(
Sep
x0
x2
)
)
)
Theorem
pack_b_p_0_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
x0
=
pack_b_p
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_b_p_0_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ο
.
x0
=
ap
(
pack_b_p
x0
x1
x2
)
0
(proof)
Theorem
pack_b_p_1_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
x0
=
pack_b_p
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
decode_b
(
ap
x0
1
)
x4
x5
(proof)
Theorem
pack_b_p_1_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
decode_b
(
ap
(
pack_b_p
x0
x1
x2
)
1
)
x3
x4
(proof)
Param
decode_p
decode_p
:
ι
→
ι
→
ο
Known
decode_encode_p
decode_encode_p
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
decode_p
(
Sep
x0
x1
)
x2
=
x1
x2
Theorem
pack_b_p_2_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
x0
=
pack_b_p
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
x3
x4
=
decode_p
(
ap
x0
2
)
x4
(proof)
Theorem
pack_b_p_2_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
x2
x3
=
decode_p
(
ap
(
pack_b_p
x0
x1
x2
)
2
)
x3
(proof)
Theorem
pack_b_p_inj
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ο
.
pack_b_p
x0
x2
x4
=
pack_b_p
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
∀ x6 .
x6
∈
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Known
encode_p_ext
encode_p_ext
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
Sep
x0
x1
=
Sep
x0
x2
Theorem
pack_b_p_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ο
.
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x5
x6
=
x2
x5
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
iff
(
x3
x5
)
(
x4
x5
)
)
⟶
pack_b_p
x0
x1
x3
=
pack_b_p
x0
x2
x4
(proof)
Definition
struct_b_p
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 :
ι → ο
.
x1
(
pack_b_p
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_b_p_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι → ο
.
struct_b_p
(
pack_b_p
x0
x1
x2
)
(proof)
Theorem
pack_struct_b_p_E1
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ο
.
struct_b_p
(
pack_b_p
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
∈
x0
(proof)
Theorem
struct_b_p_eta
:
∀ x0 .
struct_b_p
x0
⟶
x0
=
pack_b_p
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_p
(
ap
x0
2
)
)
(proof)
Definition
unpack_b_p_i
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι → ο
)
→ ι
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_p
(
ap
x0
2
)
)
Theorem
unpack_b_p_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
x6
∈
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_b_p_i
(
pack_b_p
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_b_p_o
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι → ο
)
→ ο
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_p
(
ap
x0
2
)
)
Theorem
unpack_b_p_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ο
.
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
∀ x5 :
ι → ο
.
(
∀ x6 .
x6
∈
x1
⟶
iff
(
x3
x6
)
(
x5
x6
)
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_b_p_o
(
pack_b_p
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
pack_b_e
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 .
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
encode_b
x0
x1
)
x2
)
)
Theorem
pack_b_e_0_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x0
=
pack_b_e
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_b_e_0_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
x0
=
ap
(
pack_b_e
x0
x1
x2
)
0
(proof)
Theorem
pack_b_e_1_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x0
=
pack_b_e
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
decode_b
(
ap
x0
1
)
x4
x5
(proof)
Theorem
pack_b_e_1_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
decode_b
(
ap
(
pack_b_e
x0
x1
x2
)
1
)
x3
x4
(proof)
Theorem
pack_b_e_2_eq
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x0
=
pack_b_e
x1
x2
x3
⟶
x3
=
ap
x0
2
(proof)
Theorem
pack_b_e_2_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
x2
=
ap
(
pack_b_e
x0
x1
x2
)
2
(proof)
Theorem
pack_b_e_inj
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
pack_b_e
x0
x2
x4
=
pack_b_e
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
=
x3
x6
x7
)
)
(
x4
=
x5
)
(proof)
Theorem
pack_b_e_ext
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x1
x4
x5
=
x2
x4
x5
)
⟶
pack_b_e
x0
x1
x3
=
pack_b_e
x0
x2
x3
(proof)
Definition
struct_b_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 .
x4
∈
x2
⟶
x1
(
pack_b_e
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_b_e_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 .
x2
∈
x0
⟶
struct_b_e
(
pack_b_e
x0
x1
x2
)
(proof)
Theorem
pack_struct_b_e_E1
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
struct_b_e
(
pack_b_e
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
∈
x0
(proof)
Theorem
pack_struct_b_e_E2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
struct_b_e
(
pack_b_e
x0
x1
x2
)
⟶
x2
∈
x0
(proof)
Theorem
struct_b_e_eta
:
∀ x0 .
struct_b_e
x0
⟶
x0
=
pack_b_e
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
ap
x0
2
)
(proof)
Definition
unpack_b_e_i
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
ap
x0
2
)
Theorem
unpack_b_e_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
unpack_b_e_i
(
pack_b_e
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_b_e_o
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
ι → ο
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
ap
x0
2
)
Theorem
unpack_b_e_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
(
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
x4
x5
x6
)
⟶
x0
x1
x4
x3
=
x0
x1
x2
x3
)
⟶
unpack_b_e_o
(
pack_b_e
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
pack_u_u
:=
λ x0 .
λ x1 x2 :
ι → ι
.
lam
3
(
λ x3 .
If_i
(
x3
=
0
)
x0
(
If_i
(
x3
=
1
)
(
lam
x0
x1
)
(
lam
x0
x2
)
)
)
Theorem
pack_u_u_0_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
x0
=
pack_u_u
x1
x2
x3
⟶
x1
=
ap
x0
0
(proof)
Theorem
pack_u_u_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
x0
=
ap
(
pack_u_u
x0
x1
x2
)
0
(proof)
Theorem
pack_u_u_1_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
x0
=
pack_u_u
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
ap
(
ap
x0
1
)
x4
(proof)
Theorem
pack_u_u_1_eq2
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
ap
(
ap
(
pack_u_u
x0
x1
x2
)
1
)
x3
(proof)
Theorem
pack_u_u_2_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
x0
=
pack_u_u
x1
x2
x3
⟶
∀ x4 .
x4
∈
x1
⟶
x3
x4
=
ap
(
ap
x0
2
)
x4
(proof)
Theorem
pack_u_u_2_eq2
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 .
x3
∈
x0
⟶
x2
x3
=
ap
(
ap
(
pack_u_u
x0
x1
x2
)
2
)
x3
(proof)
Theorem
pack_u_u_inj
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι → ι
.
pack_u_u
x0
x2
x4
=
pack_u_u
x1
x3
x5
⟶
and
(
and
(
x0
=
x1
)
(
∀ x6 .
x6
∈
x0
⟶
x2
x6
=
x3
x6
)
)
(
∀ x6 .
x6
∈
x0
⟶
x4
x6
=
x5
x6
)
(proof)
Theorem
pack_u_u_ext
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x0
⟶
x1
x5
=
x2
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
x3
x5
=
x4
x5
)
⟶
pack_u_u
x0
x1
x3
=
pack_u_u
x0
x2
x4
(proof)
Definition
struct_u_u
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
x3
x4
∈
x2
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
x4
x5
∈
x2
)
⟶
x1
(
pack_u_u
x2
x3
x4
)
)
⟶
x1
x0
Theorem
pack_struct_u_u_I
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
x0
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
⟶
struct_u_u
(
pack_u_u
x0
x1
x2
)
(proof)
Theorem
pack_struct_u_u_E1
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
struct_u_u
(
pack_u_u
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x3
∈
x0
(proof)
Theorem
pack_struct_u_u_E2
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
struct_u_u
(
pack_u_u
x0
x1
x2
)
⟶
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
(proof)
Theorem
struct_u_u_eta
:
∀ x0 .
struct_u_u
x0
⟶
x0
=
pack_u_u
(
ap
x0
0
)
(
ap
(
ap
x0
1
)
)
(
ap
(
ap
x0
2
)
)
(proof)
Definition
unpack_u_u_i
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι → ι
)
→ ι
.
x1
(
ap
x0
0
)
(
ap
(
ap
x0
1
)
)
(
ap
(
ap
x0
2
)
)
Theorem
unpack_u_u_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
x2
x5
=
x4
x5
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_u_u_i
(
pack_u_u
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)
Definition
unpack_u_u_o
:=
λ x0 .
λ x1 :
ι →
(
ι → ι
)
→
(
ι → ι
)
→ ο
.
x1
(
ap
x0
0
)
(
ap
(
ap
x0
1
)
)
(
ap
(
ap
x0
2
)
)
Theorem
unpack_u_u_o_eq
:
∀ x0 :
ι →
(
ι → ι
)
→
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x1
⟶
x2
x5
=
x4
x5
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
x3
x6
=
x5
x6
)
⟶
x0
x1
x4
x5
=
x0
x1
x2
x3
)
⟶
unpack_u_u_o
(
pack_u_u
x1
x2
x3
)
x0
=
x0
x1
x2
x3
(proof)