Search for blocks/addresses/...
Proofgold Asset
asset id
e1be55bc1255a513c386a41963e887e71b05268c7080cc47e1ddace64179db8d
asset hash
0abdd9b8b633f947720039682da5cf1d25ea91b38496658522475edbedd6f903
bday / block
27160
tx
eef68..
preasset
doc published by
Pr5Zc..
Known
93eac..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
x6
)
)
)
=
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
x6
)
)
)
Known
70f19..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x6
x8
)
)
)
)
)
Theorem
e53b6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x7
(
x1
x9
x5
)
)
)
)
)
)
(proof)
Theorem
d03b6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x7
(
x1
x9
x5
)
)
)
)
)
)
(proof)
Known
732b6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x8
(
x1
x6
x9
)
)
)
)
)
)
Theorem
feae8..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x7
x5
)
)
)
)
)
)
(proof)
Theorem
fbee1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x7
x5
)
)
)
)
)
)
(proof)
Known
8da64..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x8
(
x1
x5
x9
)
)
)
)
)
)
Theorem
214bc..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x5
x7
)
)
)
)
)
)
(proof)
Theorem
10b13..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x6
(
x1
x9
(
x1
x5
x7
)
)
)
)
)
)
(proof)
Theorem
b7895..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
c4aeb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x6
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Known
45f87..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x2
(
x1
x3
(
x1
x4
x5
)
)
=
x1
x3
(
x1
x4
(
x1
x2
x5
)
)
Theorem
661b3..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x7
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
a6fef..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x7
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
aa593..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x9
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
d9117..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x9
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
de36f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x9
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
4aa65..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x2
(
x1
x5
(
x1
x9
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Known
e2ae4..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x8
(
x1
x2
(
x1
x6
x9
)
)
)
)
)
)
Theorem
9b5c7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x9
(
x1
x2
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
1ba35..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x9
(
x1
x2
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
58fbf..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x9
(
x1
x2
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
fc497..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x9
(
x1
x2
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Known
22257..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x7
(
x1
x2
(
x1
x6
x9
)
)
)
)
)
)
Theorem
d9be2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x9
(
x1
x6
(
x1
x2
x7
)
)
)
)
)
)
(proof)
Theorem
25908..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x9
(
x1
x6
(
x1
x2
x7
)
)
)
)
)
)
(proof)
Theorem
f47a4..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x9
(
x1
x7
(
x1
x2
x6
)
)
)
)
)
)
(proof)
Theorem
4bceb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x9
(
x1
x7
(
x1
x2
x6
)
)
)
)
)
)
(proof)
Known
7ba10..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x2
x8
)
)
)
)
)
Theorem
2aa4d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x7
(
x1
x2
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
e7f89..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x7
(
x1
x2
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
6a094..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x2
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
7b8c8..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x2
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Known
86a4e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x2
(
x1
x7
x9
)
)
)
)
)
)
Theorem
940fb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x9
(
x1
x2
x7
)
)
)
)
)
)
(proof)
Theorem
528d8..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x9
(
x1
x2
x7
)
)
)
)
)
)
(proof)
Known
e5925..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
(
x1
x6
x8
)
)
)
)
)
Theorem
254f1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
ca375..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
(
x1
x6
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
b7ffd..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
af266..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
(
x1
x7
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Known
44a47..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
(
x1
x8
(
x1
x6
x9
)
)
)
)
)
)
Theorem
2b74d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
(
x1
x9
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
961e8..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
(
x1
x9
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
7c801..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
(
x1
x9
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
fe43a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x2
(
x1
x9
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
9666a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x2
(
x1
x7
x5
)
)
)
)
)
)
(proof)
Theorem
d81d8..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x2
(
x1
x7
x5
)
)
)
)
)
)
(proof)
Known
a5411..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x8
(
x1
x2
(
x1
x5
x9
)
)
)
)
)
)
Theorem
67696..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x2
(
x1
x5
x7
)
)
)
)
)
)
(proof)
Theorem
dc12e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x2
(
x1
x5
x7
)
)
)
)
)
)
(proof)
Known
1ee88..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x5
(
x1
x2
(
x1
x6
x9
)
)
)
)
)
)
Theorem
bba89..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x5
(
x1
x2
x7
)
)
)
)
)
)
(proof)
Theorem
612ab..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x5
(
x1
x2
x7
)
)
)
)
)
)
(proof)
Theorem
915b3..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x7
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
55956..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x9
(
x1
x7
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
44ef9..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x2
(
x1
x9
x5
)
)
)
)
)
)
(proof)
Theorem
34315..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x2
(
x1
x9
x5
)
)
)
)
)
)
(proof)
Theorem
9280f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x9
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
71545..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x9
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Known
748b8..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x5
(
x1
x2
x8
)
)
)
)
)
Theorem
26bf0..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x5
(
x1
x2
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
f3177..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x5
(
x1
x2
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Known
ea533..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x5
(
x1
x2
(
x1
x7
x9
)
)
)
)
)
)
Theorem
fd01c..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x5
(
x1
x9
(
x1
x2
x7
)
)
)
)
)
)
(proof)
Theorem
ef51a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x5
(
x1
x9
(
x1
x2
x7
)
)
)
)
)
)
(proof)
Known
ef3b0..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
x8
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x2
(
x1
x5
x8
)
)
)
)
)
Theorem
8b7f1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x2
(
x1
x5
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
578c3..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x2
(
x1
x5
(
x1
x9
x7
)
)
)
)
)
)
(proof)
Theorem
5403a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x2
(
x1
x7
(
x1
x9
x5
)
)
)
)
)
)
(proof)
Theorem
5a315..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x2
(
x1
x7
(
x1
x9
x5
)
)
)
)
)
)
(proof)
Theorem
998e6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x2
(
x1
x9
(
x1
x7
x5
)
)
)
)
)
)
(proof)
Theorem
e352d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x2
(
x1
x9
(
x1
x7
x5
)
)
)
)
)
)
(proof)
Known
c8e41..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x2
(
x1
x8
(
x1
x5
x9
)
)
)
)
)
)
Theorem
dbff4..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x2
(
x1
x9
(
x1
x5
x7
)
)
)
)
)
)
(proof)
Theorem
881c2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x2
(
x1
x9
(
x1
x5
x7
)
)
)
)
)
)
(proof)
Theorem
c7c58..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x2
(
x1
x6
x5
)
)
)
)
)
)
(proof)
Theorem
457a5..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x2
(
x1
x6
x5
)
)
)
)
)
)
(proof)
Theorem
46673..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x2
(
x1
x5
x6
)
)
)
)
)
)
(proof)
Theorem
d9791..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x2
(
x1
x5
x6
)
)
)
)
)
)
(proof)
Theorem
ac8c9..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x5
(
x1
x2
x6
)
)
)
)
)
)
(proof)
Theorem
cb1e0..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x5
(
x1
x2
x6
)
)
)
)
)
)
(proof)
Theorem
31459..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x6
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
cf16f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x9
(
x1
x6
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
e6a6e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x2
(
x1
x9
x5
)
)
)
)
)
)
(proof)
Theorem
20171..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x2
(
x1
x9
x5
)
)
)
)
)
)
(proof)
Theorem
f958b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x9
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
a8161..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x9
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
83919..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x5
(
x1
x2
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
6d978..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x5
(
x1
x2
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
05cd2..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x2
(
x1
x5
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
6f8bd..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x2
(
x1
x5
(
x1
x9
x6
)
)
)
)
)
)
(proof)
Theorem
4e824..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x2
(
x1
x6
(
x1
x9
x5
)
)
)
)
)
)
(proof)
Theorem
00081..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x2
(
x1
x6
(
x1
x9
x5
)
)
)
)
)
)
(proof)
Theorem
1be09..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x2
(
x1
x9
(
x1
x6
x5
)
)
)
)
)
)
(proof)
Theorem
cb44e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x2
(
x1
x9
(
x1
x6
x5
)
)
)
)
)
)
(proof)
Theorem
28ee7..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x2
(
x1
x9
(
x1
x5
x6
)
)
)
)
)
)
(proof)
Theorem
9dcdf..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x2
(
x1
x9
(
x1
x5
x6
)
)
)
)
)
)
(proof)
Known
1bd95..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x8
(
x1
x6
(
x1
x2
(
x1
x5
x9
)
)
)
)
)
)
Theorem
25443..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x7
(
x1
x2
(
x1
x6
x5
)
)
)
)
)
)
(proof)
Theorem
fa68b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x7
(
x1
x2
(
x1
x6
x5
)
)
)
)
)
)
(proof)
Theorem
511eb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x7
(
x1
x2
(
x1
x5
x6
)
)
)
)
)
)
(proof)
Theorem
26c85..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x7
(
x1
x2
(
x1
x5
x6
)
)
)
)
)
)
(proof)
Known
ac9fb..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x7
(
x1
x6
(
x1
x2
(
x1
x5
x9
)
)
)
)
)
)
Theorem
11d22..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x7
(
x1
x6
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
c79fa..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x7
(
x1
x6
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
84730..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x6
(
x1
x2
(
x1
x7
x5
)
)
)
)
)
)
(proof)
Theorem
b1214..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x6
(
x1
x2
(
x1
x7
x5
)
)
)
)
)
)
(proof)
Theorem
0274b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x6
(
x1
x2
(
x1
x5
x7
)
)
)
)
)
)
(proof)
Theorem
30dc0..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x6
(
x1
x2
(
x1
x5
x7
)
)
)
)
)
)
(proof)
Known
e5ea1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x6
(
x1
x7
(
x1
x2
(
x1
x5
x9
)
)
)
)
)
)
Theorem
f212a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x6
(
x1
x7
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
d7711..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x6
(
x1
x7
(
x1
x2
x5
)
)
)
)
)
)
(proof)
Theorem
d08e6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x5
(
x1
x2
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
c0ce1..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x5
(
x1
x2
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
1a40b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x5
(
x1
x2
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
37f48..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x5
(
x1
x2
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Known
445da..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x8
(
x1
x2
(
x1
x5
(
x1
x6
x9
)
)
)
)
)
)
Theorem
9d40e..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x2
(
x1
x5
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
1f611..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x2
(
x1
x5
(
x1
x7
x6
)
)
)
)
)
)
(proof)
Theorem
dc282..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
24af6..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x2
(
x1
x5
(
x1
x6
x7
)
)
)
)
)
)
(proof)
Theorem
f4baf..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x2
(
x1
x6
(
x1
x7
x5
)
)
)
)
)
)
(proof)
Theorem
44815..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x2
(
x1
x6
(
x1
x7
x5
)
)
)
)
)
)
(proof)
Known
5ac6f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x7
(
x1
x3
(
x1
x4
(
x1
x8
(
x1
x2
(
x1
x6
(
x1
x5
x9
)
)
)
)
)
)
Theorem
1b189..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
x3
(
x1
x2
x4
)
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x2
(
x1
x6
(
x1
x5
x7
)
)
)
)
)
)
(proof)
Theorem
63cab..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ι
.
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x0
(
x1
x2
x3
)
)
⟶
(
∀ x2 x3 x4 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
⟶
(
∀ x2 x3 .
x0
x2
⟶
x0
x3
⟶
x1
x2
x3
=
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x0
x9
⟶
x1
x2
(
x1
x3
(
x1
x4
(
x1
x5
(
x1
x6
(
x1
x7
(
x1
x8
x9
)
)
)
)
)
)
=
x1
x8
(
x1
x3
(
x1
x4
(
x1
x9
(
x1
x2
(
x1
x6
(
x1
x5
x7
)
)
)
)
)
)
(proof)