Search for blocks/addresses/...

Proofgold Asset

asset id
0b650a979c45a26990907dc361824e01c512f041d0ce2048a6350114dd7f0621
asset hash
0d1c13e4b9ed0ea53692ccea1bec2576ae419d47f6bc8f34f18c3eb2438d8fa3
bday / block
9725
tx
2c45b..
preasset
doc published by PrCx1..
Param lam_idlam_id : ιι
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Param lam_complam_comp : ιιιι
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param struct_pstruct_p : ιο
Param unpack_p_ounpack_p_o : ι(ι(ιο) → ο) → ο
Definition PtdPredstruct_p_nonempty := λ x0 . and (struct_p x0) (unpack_p_o x0 (λ x1 . λ x2 : ι → ο . ∀ x3 : ο . (∀ x4 . and (x4x1) (x2 x4)x3)x3))
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Param UnaryPredHomHom_struct_p : ιιιο
Known 5387a..MetaCat_struct_p_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)MetaCat x0 UnaryPredHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem aef2e..MetaCat_struct_p_nonempty : MetaCat PtdPred UnaryPredHom struct_id struct_comp (proof)
Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param TrueTrue : ο
Param HomSetSetHom : ιιιο
Known 57ba0..MetaCat_struct_p_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)MetaFunctor x0 UnaryPredHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 0322a..MetaCat_struct_p_nonempty_Forgetful : MetaFunctor PtdPred UnaryPredHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)
Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture da2c1..MetaCat_struct_p_nonempty_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p PtdPred UnaryPredHom struct_id struct_comp x1 x3x2)x2)x0)x0
Param MetaCat_terminal_pterminal_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture 128d6..MetaCat_struct_p_nonempty_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p PtdPred UnaryPredHom struct_id struct_comp x1 x3x2)x2)x0)x0
Param MetaCat_coproduct_constr_pcoproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture 0e807..MetaCat_struct_p_nonempty_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture 45658..MetaCat_struct_p_nonempty_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_coequalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture 9f352.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0
Param MetaCat_equalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture 0922e.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0
Param MetaCat_pushout_buggy_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture b1774.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_pullback_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture c2b8c.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_exp_constr_pproduct_exponent_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιιιι) → ο
Conjecture e25fa..MetaCat_struct_p_nonempty_product_exponent : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι . (∀ x12 : ο . (∀ x13 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7 x9 x11 x13x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_subobject_classifier_buggy_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιι(ιιιι) → (ιιιιιιι) → ο
Conjecture 478d1.. : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_nno_pnno_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιιι(ιιιι) → ο
Conjecture b8863..MetaCat_struct_p_nonempty_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Conjecture 57ed9..MetaCat_struct_p_nonempty_left_adjoint_forgetful : ∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) PtdPred UnaryPredHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Param struct_estruct_e : ιο
Param PtdSetHomHom_struct_e : ιιιο
Param unpack_e_iunpack_e_i : ιCT2 ι
Param pack_ppack_p : ι(ιο) → ι
Conjecture 1f2a9..MetaFunctor_struct_e_struct_p_nonempty : MetaFunctor struct_e PtdSetHom (λ x0 . lam_id (ap x0 0)) (λ x0 x1 x2 . lam_comp (ap x0 0)) PtdPred UnaryPredHom (λ x0 . lam_id (ap x0 0)) (λ x0 x1 x2 . lam_comp (ap x0 0)) (λ x0 . unpack_e_i x0 (λ x1 x2 . pack_p x1 (λ x3 . x3 = x2))) (λ x0 x1 x2 . x2)