Search for blocks/addresses/...
Proofgold Asset
asset id
6d198c9eff66a6f9175065ffd0226958f3a8ff393190a2fff3a03a24206a1a1b
asset hash
12a0ce6e67c8b12e10abf06f5e4695ba8b663ef7d0ef287affffee2274db25f1
bday / block
19045
tx
8008f..
preasset
doc published by
Pr4zB..
Definition
Church17_p
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x9
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x10
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x11
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x12
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x13
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x14
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x15
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x16
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x17
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
x18
)
⟶
x1
x0
Param
u1
:
ι
Param
u2
:
ι
Param
u3
:
ι
Param
u4
:
ι
Param
u5
:
ι
Param
u6
:
ι
Param
u7
:
ι
Param
u8
:
ι
Param
u9
:
ι
Param
u10
:
ι
Param
u11
:
ι
Param
u12
:
ι
Param
u13
:
ι
Param
u14
:
ι
Param
u15
:
ι
Param
u16
:
ι
Definition
Church17_to_u17
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
x0
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
u13
u14
u15
u16
Param
u17
:
ι
Known
c5b55..
:
0
∈
u17
Known
f6e42..
:
u1
∈
u17
Known
9502b..
:
u2
∈
u17
Known
35c0a..
:
u3
∈
u17
Known
793dd..
:
u4
∈
u17
Known
79c48..
:
u5
∈
u17
Known
b3205..
:
u6
∈
u17
Known
51ef0..
:
u7
∈
u17
Known
6a4e9..
:
u8
∈
u17
Known
fd1a6..
:
u9
∈
u17
Known
e886d..
:
u10
∈
u17
Known
e57ea..
:
u11
∈
u17
Known
a1a10..
:
u12
∈
u17
Known
7315d..
:
u13
∈
u17
Known
35e01..
:
u14
∈
u17
Known
31b8d..
:
u15
∈
u17
Known
dfaf3..
:
u16
∈
u17
Theorem
394ec..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church17_p
x0
⟶
Church17_to_u17
x0
∈
u17
(proof)
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
u17_to_Church17
:=
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
ap
(
lam
17
(
λ x18 .
If_i
(
x18
=
0
)
x1
(
If_i
(
x18
=
1
)
x2
(
If_i
(
x18
=
2
)
x3
(
If_i
(
x18
=
3
)
x4
(
If_i
(
x18
=
4
)
x5
(
If_i
(
x18
=
5
)
x6
(
If_i
(
x18
=
6
)
x7
(
If_i
(
x18
=
7
)
x8
(
If_i
(
x18
=
8
)
x9
(
If_i
(
x18
=
9
)
x10
(
If_i
(
x18
=
10
)
x11
(
If_i
(
x18
=
11
)
x12
(
If_i
(
x18
=
12
)
x13
(
If_i
(
x18
=
13
)
x14
(
If_i
(
x18
=
14
)
x15
(
If_i
(
x18
=
15
)
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
x0
Known
96595..
:
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
ap
(
lam
x1
(
λ x5 .
If_i
(
x5
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x5
)
)
)
x3
=
x0
)
⟶
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
(
x4
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
ap
(
lam
x1
(
λ x6 .
If_i
(
x6
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x6
)
)
)
x4
=
ap
(
lam
x1
(
x2
(
ordsucc
x3
)
)
)
x4
)
⟶
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
ap
(
lam
17
(
λ x18 .
If_i
(
x18
=
0
)
x0
(
If_i
(
x18
=
1
)
x1
(
If_i
(
x18
=
2
)
x2
(
If_i
(
x18
=
3
)
x3
(
If_i
(
x18
=
4
)
x4
(
If_i
(
x18
=
5
)
x5
(
If_i
(
x18
=
6
)
x6
(
If_i
(
x18
=
7
)
x7
(
If_i
(
x18
=
8
)
x8
(
If_i
(
x18
=
9
)
x9
(
If_i
(
x18
=
10
)
x10
(
If_i
(
x18
=
11
)
x11
(
If_i
(
x18
=
12
)
x12
(
If_i
(
x18
=
13
)
x13
(
If_i
(
x18
=
14
)
x14
(
If_i
(
x18
=
15
)
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u15
=
x15
Known
48efb..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
ap
(
lam
x1
(
λ x5 .
If_i
(
x5
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x5
)
)
)
x3
=
x0
Known
d21a1..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
(
x4
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
ap
(
lam
x1
(
λ x6 .
If_i
(
x6
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x6
)
)
)
x4
=
ap
(
lam
x1
(
x2
(
ordsucc
x3
)
)
)
x4
Theorem
0ed8d..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
ap
(
lam
17
(
λ x18 .
If_i
(
x18
=
0
)
x0
(
If_i
(
x18
=
1
)
x1
(
If_i
(
x18
=
2
)
x2
(
If_i
(
x18
=
3
)
x3
(
If_i
(
x18
=
4
)
x4
(
If_i
(
x18
=
5
)
x5
(
If_i
(
x18
=
6
)
x6
(
If_i
(
x18
=
7
)
x7
(
If_i
(
x18
=
8
)
x8
(
If_i
(
x18
=
9
)
x9
(
If_i
(
x18
=
10
)
x10
(
If_i
(
x18
=
11
)
x11
(
If_i
(
x18
=
12
)
x12
(
If_i
(
x18
=
13
)
x13
(
If_i
(
x18
=
14
)
x14
(
If_i
(
x18
=
15
)
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u15
=
x15
(proof)
Known
8a676..
:
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 .
x3
∈
x1
⟶
ap
(
lam
x1
(
λ x5 .
If_i
(
x5
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x5
)
)
)
x3
=
x0
)
⟶
(
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 .
(
x4
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
ap
(
lam
x1
(
λ x6 .
If_i
(
x6
=
x3
)
x0
(
x2
(
ordsucc
x3
)
x6
)
)
)
x4
=
ap
(
lam
x1
(
x2
(
ordsucc
x3
)
)
)
x4
)
⟶
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
ap
(
lam
17
(
λ x18 .
If_i
(
x18
=
0
)
x0
(
If_i
(
x18
=
1
)
x1
(
If_i
(
x18
=
2
)
x2
(
If_i
(
x18
=
3
)
x3
(
If_i
(
x18
=
4
)
x4
(
If_i
(
x18
=
5
)
x5
(
If_i
(
x18
=
6
)
x6
(
If_i
(
x18
=
7
)
x7
(
If_i
(
x18
=
8
)
x8
(
If_i
(
x18
=
9
)
x9
(
If_i
(
x18
=
10
)
x10
(
If_i
(
x18
=
11
)
x11
(
If_i
(
x18
=
12
)
x12
(
If_i
(
x18
=
13
)
x13
(
If_i
(
x18
=
14
)
x14
(
If_i
(
x18
=
15
)
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u16
=
x16
Theorem
8ea1f..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
ap
(
lam
17
(
λ x18 .
If_i
(
x18
=
0
)
x0
(
If_i
(
x18
=
1
)
x1
(
If_i
(
x18
=
2
)
x2
(
If_i
(
x18
=
3
)
x3
(
If_i
(
x18
=
4
)
x4
(
If_i
(
x18
=
5
)
x5
(
If_i
(
x18
=
6
)
x6
(
If_i
(
x18
=
7
)
x7
(
If_i
(
x18
=
8
)
x8
(
If_i
(
x18
=
9
)
x9
(
If_i
(
x18
=
10
)
x10
(
If_i
(
x18
=
11
)
x11
(
If_i
(
x18
=
12
)
x12
(
If_i
(
x18
=
13
)
x13
(
If_i
(
x18
=
14
)
x14
(
If_i
(
x18
=
15
)
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
u16
=
x16
(proof)
Known
aa7c9..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
x0
x1
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
=
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
)
⟶
x0
x1
=
x2
Theorem
c424d..
:
u17_to_Church17
u15
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x16
(proof)
Theorem
480e6..
:
u17_to_Church17
u16
=
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x17
(proof)