Search for blocks/addresses/...

Proofgold Asset

asset id
3e5c9c68b9e7ee72a5e562a251e818c43d555976ec5749587e1b193c7391c544
asset hash
148dd93c37a4833bcb061cd771528b9568736ad359dae8d006663c397c2bc961
bday / block
28951
tx
6cb05..
preasset
doc published by Pr5Zc..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param omegaomega : ι
Param mul_natmul_nat : ιιι
Param ordsuccordsucc : ιι
Definition even_nateven_nat := λ x0 . and (x0omega) (∀ x1 : ο . (∀ x2 . and (x2omega) (x0 = mul_nat 2 x2)x1)x1)
Param nat_pnat_p : ιο
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Param add_natadd_nat : ιιι
Definition odd_natodd_nat := λ x0 . and (x0omega) (∀ x1 . x1omegax0 = mul_nat 2 x1∀ x2 : ο . x2)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known add_nat_0Radd_nat_0R : ∀ x0 . add_nat x0 0 = x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known iffIiffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Known even_nat_0even_nat_0 : even_nat 0
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known even_nat_not_odd_nateven_nat_not_odd_nat : ∀ x0 . even_nat x0not (odd_nat x0)
Known add_nat_SRadd_nat_SR : ∀ x0 x1 . nat_p x1add_nat x0 (ordsucc x1) = ordsucc (add_nat x0 x1)
Known odd_nat_even_nat_Sodd_nat_even_nat_S : ∀ x0 . odd_nat x0even_nat (ordsucc x0)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known even_nat_or_odd_nateven_nat_or_odd_nat : ∀ x0 . nat_p x0or (even_nat x0) (odd_nat x0)
Known even_nat_odd_nat_Seven_nat_odd_nat_S : ∀ x0 . even_nat x0odd_nat (ordsucc x0)
Known add_nat_padd_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (add_nat x0 x1)
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Theorem d465d.. : ∀ x0 . even_nat x0∀ x1 . nat_p x1and (iff (even_nat x1) (even_nat (add_nat x0 x1))) (iff (odd_nat x1) (odd_nat (add_nat x0 x1))) (proof)
Theorem de99a.. : ∀ x0 . odd_nat x0∀ x1 . nat_p x1and (iff (even_nat x1) (odd_nat (add_nat x0 x1))) (iff (odd_nat x1) (even_nat (add_nat x0 x1))) (proof)
Theorem a723f.. : ∀ x0 x1 . even_nat x0even_nat x1even_nat (add_nat x0 x1) (proof)
Theorem 96034.. : ∀ x0 x1 . even_nat x0odd_nat x1odd_nat (add_nat x0 x1) (proof)
Theorem c68f4.. : ∀ x0 x1 . odd_nat x0odd_nat x1even_nat (add_nat x0 x1) (proof)
Param add_SNoadd_SNo : ιιι
Known add_nat_add_SNoadd_nat_add_SNo : ∀ x0 . x0omega∀ x1 . x1omegaadd_nat x0 x1 = add_SNo x0 x1
Theorem fcda7.. : ∀ x0 x1 . even_nat x0even_nat x1even_nat (add_SNo x0 x1) (proof)
Theorem 04348.. : ∀ x0 x1 . even_nat x0odd_nat x1odd_nat (add_SNo x0 x1) (proof)
Known add_nat_comadd_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat x0 x1 = add_nat x1 x0
Theorem 2f1dc.. : ∀ x0 x1 . odd_nat x0even_nat x1odd_nat (add_SNo x0 x1) (proof)
Theorem 80563.. : ∀ x0 x1 . odd_nat x0odd_nat x1even_nat (add_SNo x0 x1) (proof)
Known mul_nat_0Rmul_nat_0R : ∀ x0 . mul_nat x0 0 = 0
Known mul_nat_SRmul_nat_SR : ∀ x0 x1 . nat_p x1mul_nat x0 (ordsucc x1) = add_nat x0 (mul_nat x0 x1)
Theorem fc7ba.. : ∀ x0 . even_nat x0∀ x1 . nat_p x1even_nat (mul_nat x0 x1) (proof)
Known iff_refliff_refl : ∀ x0 : ο . iff x0 x0
Known mul_nat_pmul_nat_p : ∀ x0 . nat_p x0∀ x1 . nat_p x1nat_p (mul_nat x0 x1)
Known mul_nat_commul_nat_com : ∀ x0 . nat_p x0∀ x1 . nat_p x1mul_nat x0 x1 = mul_nat x1 x0
Theorem odd_nat_iff_odd_mul_natodd_nat_iff_odd_mul_nat : ∀ x0 . odd_nat x0∀ x1 . nat_p x1iff (odd_nat x1) (odd_nat (mul_nat x0 x1)) (proof)
Theorem odd_nat_mul_natodd_nat_mul_nat : ∀ x0 x1 . odd_nat x0odd_nat x1odd_nat (mul_nat x0 x1) (proof)
Param mul_SNomul_SNo : ιιι
Known mul_nat_mul_SNomul_nat_mul_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_SNo x0 x1
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Theorem 7dfbb.. : ∀ x0 x1 . even_nat x0nat_p x1even_nat (mul_SNo x0 x1) (proof)
Theorem 5144a.. : ∀ x0 x1 . nat_p x0even_nat x1even_nat (mul_SNo x0 x1) (proof)
Theorem 41e14.. : ∀ x0 x1 . odd_nat x0odd_nat x1odd_nat (mul_SNo x0 x1) (proof)
Known nat_2nat_2 : nat_p 2
Known even_nat_doubleeven_nat_double : ∀ x0 . nat_p x0even_nat (mul_nat 2 x0)
Theorem even_nat_2x : ∀ x0 . x0omegaeven_nat (mul_SNo 2 x0) (proof)
Theorem 02cd1.. : ∀ x0 . even_nat x0even_nat (mul_SNo x0 x0) (proof)
Theorem 222d4.. : ∀ x0 . odd_nat x0odd_nat (mul_SNo x0 x0) (proof)
Param intint : ι
Param divides_intdivides_int : ιιο
Definition 79148.. := λ x0 . and (x0int) (divides_int 2 x0)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known Subq_omega_intSubq_omega_int : omegaint
Param divides_natdivides_nat : ιιο
Known divides_nat_divides_intdivides_nat_divides_int : ∀ x0 x1 . divides_nat x0 x1divides_int x0 x1
Known b2900.. : ∀ x0 . even_nat x0divides_nat 2 x0
Theorem b06fc.. : ∀ x0 . even_nat x079148.. x0 (proof)
Param SNoLeSNoLe : ιιο
Param minus_SNominus_SNo : ιι
Param SNoSNo : ιο
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known add_SNo_minus_SNo_prop2add_SNo_minus_SNo_prop2 : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 (add_SNo (minus_SNo x0) x1) = x1
Known aa7e8..nonneg_int_nat_p : ∀ x0 . x0intSNoLe 0 x0nat_p x0
Known int_add_SNoint_add_SNo : ∀ x0 . x0int∀ x1 . x1intadd_SNo x0 x1int
Known nat_p_intnat_p_int : ∀ x0 . nat_p x0x0int
Known int_minus_SNoint_minus_SNo : ∀ x0 . x0intminus_SNo x0int
Known add_SNo_minus_Le2badd_SNo_minus_Le2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x2 x1) x0SNoLe x2 (add_SNo x0 (minus_SNo x1))
Known SNo_0SNo_0 : SNo 0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known omega_SNoomega_SNo : ∀ x0 . x0omegaSNo x0
Theorem 48090.. : ∀ x0 x1 . even_nat x0even_nat x1SNoLe x0 x1even_nat (add_SNo x1 (minus_SNo x0)) (proof)
Theorem a28e8.. : ∀ x0 x1 . odd_nat x0odd_nat x1SNoLe x0 x1even_nat (add_SNo x1 (minus_SNo x0)) (proof)
Known SNo_foilSNo_foil : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (mul_SNo x0 x2) (add_SNo (mul_SNo x0 x3) (add_SNo (mul_SNo x1 x2) (mul_SNo x1 x3)))
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known d67ed.. : ∀ x0 . SNo x0mul_SNo 2 x0 = add_SNo x0 x0
Theorem 8b4bf.. : ∀ x0 x1 . SNo x0SNo x1mul_SNo (add_SNo x0 x1) (add_SNo x0 x1) = add_SNo (mul_SNo x0 x0) (add_SNo (mul_SNo 2 (mul_SNo x0 x1)) (mul_SNo x1 x1)) (proof)
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known SNo_2SNo_2 : SNo 2
Known bc1cf.. : ∀ x0 . SNo x0mul_SNo (minus_SNo x0) (minus_SNo x0) = mul_SNo x0 x0
Theorem b5021.. : ∀ x0 x1 . SNo x0SNo x1mul_SNo (add_SNo x0 (minus_SNo x1)) (add_SNo x0 (minus_SNo x1)) = add_SNo (mul_SNo x0 x0) (add_SNo (minus_SNo (mul_SNo 2 (mul_SNo x0 x1))) (mul_SNo x1 x1)) (proof)
Known add_SNo_com_3_0_1add_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x1 (add_SNo x0 x2)
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Known add_SNo_minus_SNo_rinvadd_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Theorem e33a0.. : ∀ x0 x1 . SNo x0SNo x1add_SNo (mul_SNo (add_SNo x0 x1) (add_SNo x0 x1)) (mul_SNo (add_SNo x0 (minus_SNo x1)) (add_SNo x0 (minus_SNo x1))) = mul_SNo 2 (add_SNo (mul_SNo x0 x0) (mul_SNo x1 x1)) (proof)
Known mul_SNo_nonzero_cancelmul_SNo_nonzero_cancel_L : ∀ x0 x1 x2 . SNo x0(x0 = 0∀ x3 : ο . x3)SNo x1SNo x2mul_SNo x0 x1 = mul_SNo x0 x2x1 = x2
Known 48da5.. : SNo 4
Known neq_4_0neq_4_0 : 4 = 0∀ x0 : ο . x0
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known SNo_add_SNo_4SNo_add_SNo_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNo (add_SNo x0 (add_SNo x1 (add_SNo x2 x3)))
Known 55f68.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo x3 (add_SNo x0 (add_SNo x1 x2)) = add_SNo (mul_SNo x3 x0) (add_SNo (mul_SNo x3 x1) (mul_SNo x3 x2))
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known 3c0dd.. : ∀ x0 . SNo x0mul_SNo 4 (mul_SNo x0 x0) = mul_SNo (mul_SNo 2 x0) (mul_SNo 2 x0)
Known ecc46.. : mul_SNo 2 2 = 4
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Theorem ff7fb.. : ∀ x0 . nat_p x0∀ x1 x2 x3 x4 . even_nat x1even_nat x2odd_nat x3odd_nat x4SNoLe x1 x2SNoLe x3 x4mul_SNo 2 x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4)))∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x7 x7) (add_SNo (mul_SNo x8 x8) (mul_SNo x9 x9)))x5)x5 (proof)
Param SNoLtSNoLt : ιιο
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Theorem 568d4.. : ∀ x0 . nat_p x0∀ x1 x2 x3 x4 . even_nat x1even_nat x2odd_nat x3odd_nat x4mul_SNo 2 x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4)))∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x7 x7) (add_SNo (mul_SNo x8 x8) (mul_SNo x9 x9)))x5)x5 (proof)
Theorem 0a868.. : ∀ x0 . nat_p x0∀ x1 x2 x3 x4 . even_nat x1even_nat x2even_nat x3even_nat x4SNoLe x1 x2SNoLe x3 x4mul_SNo 2 x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4)))∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x7 x7) (add_SNo (mul_SNo x8 x8) (mul_SNo x9 x9)))x5)x5 (proof)
Theorem 6ca1c.. : ∀ x0 . nat_p x0∀ x1 x2 x3 x4 . even_nat x1even_nat x2even_nat x3even_nat x4mul_SNo 2 x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4)))∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x7 x7) (add_SNo (mul_SNo x8 x8) (mul_SNo x9 x9)))x5)x5 (proof)
Theorem fc389.. : ∀ x0 . nat_p x0∀ x1 x2 x3 x4 . odd_nat x1odd_nat x2odd_nat x3odd_nat x4SNoLe x1 x2SNoLe x3 x4mul_SNo 2 x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4)))∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x7 x7) (add_SNo (mul_SNo x8 x8) (mul_SNo x9 x9)))x5)x5 (proof)
Theorem ced26.. : ∀ x0 . nat_p x0∀ x1 x2 x3 x4 . odd_nat x1odd_nat x2odd_nat x3odd_nat x4mul_SNo 2 x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4)))∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x7 x7) (add_SNo (mul_SNo x8 x8) (mul_SNo x9 x9)))x5)x5 (proof)
Theorem 679ef.. : ∀ x0 . nat_p x0∀ x1 x2 x3 x4 . even_nat x1even_nat x2even_nat x3odd_nat x4mul_SNo 2 x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4)))∀ x5 : ο . x5 (proof)
Theorem ec8e6.. : ∀ x0 . nat_p x0∀ x1 x2 x3 x4 . even_nat x1odd_nat x2odd_nat x3odd_nat x4mul_SNo 2 x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4)))∀ x5 : ο . x5 (proof)
Known add_SNo_rotate_3_1add_SNo_rotate_3_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x2 (add_SNo x0 x1)
Known add_SNo_rotate_4_1add_SNo_rotate_4_1 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo x3 (add_SNo x0 (add_SNo x1 x2))
Known 593c2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 . x0 x2x0 x3x0 x4x0 x5x1 x2 (x1 x3 (x1 x4 x5)) = x1 x5 (x1 x3 (x1 x4 x2))
Known 79d19.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x4 (x1 x3 x2)
Known 45f87.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 . x0 x2x0 x3x0 x4x0 x5x1 x2 (x1 x3 (x1 x4 x5)) = x1 x3 (x1 x4 (x1 x2 x5))
Theorem 36e2b.. : ∀ x0 . nat_p x0∀ x1 . x1omega∀ x2 . x2omega∀ x3 . x3omega∀ x4 . x4omegamul_SNo 2 x0 = add_SNo (mul_SNo x1 x1) (add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (mul_SNo x4 x4)))∀ x5 : ο . (∀ x6 . x6omega∀ x7 . x7omega∀ x8 . x8omega∀ x9 . x9omegax0 = add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x7 x7) (add_SNo (mul_SNo x8 x8) (mul_SNo x9 x9)))x5)x5 (proof)