Search for blocks/addresses/...
Proofgold Asset
asset id
167b70a38403d9f14369112180a421b8cad3fb4fdfa45a0b222bd7f596e0b6ec
asset hash
a645cc3be4df6c09e247f7f7c0cc5c3f41ccb6fdcb5742f070982e1e0a66dba7
bday / block
36138
tx
96398..
preasset
doc published by
Pr4zB..
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
cf2df..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
8b6ad..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
∀ x5 : ο .
(
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
x5
)
⟶
x5
Definition
c5756..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
8b6ad..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
not
(
x0
x2
x5
)
⟶
x0
x3
x5
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
2de86..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
not
(
x0
x3
x6
)
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
796c4..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
d7cce..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
796c4..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
f7902..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
d7cce..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
788a1..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
f7902..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
cb091..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 : ο .
(
788a1..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
(
x1
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x2
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x3
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x4
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x5
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x6
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x7
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x8
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x9
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x10
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
x0
x1
x11
⟶
x0
x2
x11
⟶
not
(
x0
x3
x11
)
⟶
not
(
x0
x4
x11
)
⟶
x0
x5
x11
⟶
not
(
x0
x6
x11
)
⟶
not
(
x0
x7
x11
)
⟶
x0
x8
x11
⟶
not
(
x0
x9
x11
)
⟶
not
(
x0
x10
x11
)
⟶
x12
)
⟶
x12
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
53a3c..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
not
(
x1
x2
x3
)
⟶
not
(
x1
x3
x2
)
)
⟶
cf2df..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
(
x2
=
x3
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x4
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
(
x5
=
x6
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x1
x2
x3
)
⟶
not
(
x1
x2
x4
)
⟶
not
(
x1
x3
x4
)
⟶
not
(
x1
x2
x5
)
⟶
not
(
x1
x3
x5
)
⟶
not
(
x1
x4
x5
)
⟶
not
(
x1
x2
x6
)
⟶
not
(
x1
x3
x6
)
⟶
not
(
x1
x4
x6
)
⟶
not
(
x1
x5
x6
)
⟶
False
Known
61345..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
4402e..
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x2
x3
⟶
x1
x2
x4
⟶
x1
x3
x4
⟶
False
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
38ec9..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
cb091..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
⟶
∀ x15 : ο .
x15
(proof)