Search for blocks/addresses/...
Proofgold Asset
asset id
19db39a6aa5ef48b64530140521fbf2e9459b4f872c96be8b4aa692bfba52519
asset hash
9e08a4e58d664bc7b1fd0f26495825ecc2194bec7d7d5b59b0acbd6179b826a2
bday / block
4948
tx
3d527..
preasset
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
explicit_Field_minus
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
explicit_Field
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Param
explicit_Reals
explicit_Reals
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Param
explicit_Complex
explicit_Complex
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
explicit_Complex_I
explicit_Complex_I
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
∀ x3 x4 x5 .
∀ x6 x7 :
ι →
ι → ι
.
explicit_Field
x0
x3
x4
x6
x7
⟶
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ο
.
explicit_Reals
{x10 ∈
x0
|
x1
x10
=
x10
}
x3
x4
x6
x7
x9
⟶
x8
)
⟶
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
{x9 ∈
x0
|
x1
x9
=
x9
}
)
⟶
x5
∈
x0
⟶
(
∀ x8 .
x8
∈
x0
⟶
x1
x8
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x2
x8
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x8
=
x6
(
x1
x8
)
(
x7
x5
(
x2
x8
)
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x1
x8
=
x1
x9
⟶
x2
x8
=
x2
x9
⟶
x8
=
x9
)
⟶
x6
(
x7
x5
x5
)
x4
=
x3
⟶
explicit_Complex
x0
x1
x2
x3
x4
x5
x6
x7
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Theorem
256ef..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
∀ x7 .
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x6
x8
x9
=
x6
x10
x11
⟶
and
(
x8
=
x10
)
(
x9
=
x11
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x3
x8
x9
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x3
x8
x9
=
x3
x9
x8
)
⟶
x1
∈
x0
⟶
(
∀ x8 .
x8
∈
x0
⟶
x3
x1
x8
=
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
x8
x9
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
x8
x9
=
x4
x9
x8
)
⟶
x2
∈
x0
⟶
(
∀ x8 .
x8
∈
x0
⟶
x4
x2
x8
=
x8
)
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x2
∈
x0
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x6
x8
x9
∈
x7
)
⟶
(
∀ x8 .
x8
∈
x7
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x8
=
x6
x10
x11
⟶
x9
(
x6
x10
x11
)
)
⟶
x9
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
=
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
=
x9
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x6
x8
x1
∈
{x9 ∈
x7
|
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x1
=
x9
}
)
⟶
(
∀ x8 .
x8
∈
x7
⟶
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x7
⟶
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x6
(
x3
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x10
x11
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x8
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x10
x11
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
=
x6
(
x3
x8
x10
)
(
x3
x9
x11
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x10
x11
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x8
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x10
x11
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x10
x11
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x8
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x10
x11
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
)
=
x6
(
x3
(
x4
x8
x10
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x9
x11
)
)
)
(
x3
(
x4
x8
x11
)
(
x4
x9
x10
)
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
x8
=
x1
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x3
x8
(
explicit_Field_minus
x0
x1
x2
x3
x4
x8
)
=
x1
)
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x1
=
x1
⟶
(
∀ x8 .
x8
∈
x0
⟶
x4
x1
x8
=
x1
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x4
x8
x1
=
x1
)
⟶
explicit_Field
x7
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
)
)
⟶
explicit_Reals
{x8 ∈
x7
|
x6
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
x1
=
x8
}
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
)
)
(
λ x8 x9 .
x5
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
⟶
and
(
explicit_Complex
x7
(
λ x8 .
x6
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
)
x1
)
(
λ x8 .
x6
(
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x9
)
)
)
x1
)
(
x6
x1
x1
)
(
x6
x2
x1
)
(
x6
x1
x2
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
)
)
)
(
(
∀ x8 .
x8
∈
x0
⟶
x6
x8
x1
=
x8
)
⟶
and
(
and
(
and
(
and
(
and
(
x0
⊆
x7
)
(
∀ x8 .
x8
∈
x0
⟶
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
=
x8
)
)
(
x6
x1
x1
=
x1
)
)
(
x6
x2
x1
=
x2
)
)
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x6
(
x3
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
(
x3
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
=
x3
x8
x9
)
)
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x8
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
)
(
x4
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x8
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
x11
)
)
)
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
)
)
=
x4
x8
x9
)
)
(proof)