Search for blocks/addresses/...
Proofgold Asset
asset id
9f47c9f583e3a9373e361a867811311702c40b683374e4741fc332055c590f85
asset hash
1b415b4cc6c198e46c4b8539c4e2afcd8f65d3f6fd49a357d9321cb9a68f4aab
bday / block
35131
tx
0c84f..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
47f54..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 :
ι → ι
.
∀ x5 x6 :
ι → ο
.
∀ x7 .
∀ x8 :
ι →
ι → ο
.
∀ x9 :
ι → ι
.
∀ x10 :
ι → ο
.
∀ x11 x12 x13 .
∀ x14 x15 :
ι → ι
.
∀ x16 x17 .
∀ x18 :
ι → ι
.
∀ x19 :
ι →
ι → ι
.
∀ x20 :
ι → ι
.
∀ x21 .
∀ x22 :
ι →
ι → ι
.
∀ x23 x24 x25 x26 x27 x28 x29 x30 :
ι → ο
.
∀ x31 x32 x33 .
∀ x34 x35 x36 :
ι → ο
.
∀ x37 :
ι →
ι →
ι →
ι → ι
.
∀ x38 x39 :
ι →
ι →
ι → ι
.
∀ x40 .
∀ x41 :
ι → ο
.
∀ x42 :
ι →
ι → ι
.
∀ x43 .
∀ x44 :
ι → ο
.
∀ x45 :
ι → ι
.
∀ x46 .
∀ x47 :
ι → ο
.
∀ x48 :
ι → ι
.
∀ x49 :
ι →
ι → ο
.
∀ x50 :
ι → ι
.
∀ x51 :
ι → ο
.
∀ x52 .
∀ x53 :
ι → ο
.
∀ x54 :
ι →
ι → ο
.
∀ x55 x56 :
ι → ι
.
∀ x57 :
ι →
ι → ο
.
∀ x58 :
ι → ο
.
∀ x59 :
ι → ι
.
∀ x60 :
ι →
ι → ο
.
∀ x61 :
ι → ο
.
∀ x62 .
∀ x63 :
ι → ο
.
∀ x64 .
∀ x65 :
ι → ο
.
(
∀ x66 x67 .
x65
x67
⟶
(
x67
=
x66
⟶
False
)
⟶
x65
x66
⟶
False
)
⟶
(
∀ x66 x67 .
x0
x66
x67
⟶
x65
x67
⟶
False
)
⟶
(
∀ x66 .
x65
x66
⟶
(
x66
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 .
x0
x66
x67
⟶
x2
x67
(
x1
x68
)
⟶
x65
x68
⟶
False
)
⟶
(
∀ x66 x67 x68 .
x0
x67
x68
⟶
x2
x68
(
x1
x66
)
⟶
(
x2
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x3
x67
x66
⟶
(
x2
x67
(
x1
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x2
x67
(
x1
x66
)
⟶
(
x3
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x2
x66
x67
⟶
(
x65
x67
⟶
False
)
⟶
(
x0
x66
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x0
x67
x66
⟶
(
x2
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
(
x3
x66
x66
⟶
False
)
⟶
False
)
⟶
(
(
x63
x62
⟶
False
)
⟶
False
)
⟶
(
x65
x62
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x60
(
x59
x66
)
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x2
(
x59
x66
)
(
x1
(
x4
x66
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x57
(
x56
x66
)
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x2
(
x56
x66
)
(
x1
(
x4
x66
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x58
x66
⟶
(
x54
(
x55
x66
)
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x58
x66
⟶
(
x2
(
x55
x66
)
(
x1
(
x4
x66
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x53
x52
⟶
False
)
⟶
False
)
⟶
(
(
x5
x52
⟶
False
)
⟶
False
)
⟶
(
(
x51
x52
⟶
False
)
⟶
False
)
⟶
(
(
x65
x52
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
(
x65
x66
⟶
False
)
⟶
(
x49
(
x50
x66
)
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
(
x65
x66
⟶
False
)
⟶
(
x2
(
x50
x66
)
(
x1
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x49
(
x48
x66
)
x66
⟶
False
)
⟶
(
∀ x66 .
(
x2
(
x48
x66
)
(
x1
x66
)
⟶
False
)
⟶
False
)
⟶
(
(
x47
x46
⟶
False
)
⟶
False
)
⟶
(
(
x6
x46
⟶
False
)
⟶
False
)
⟶
(
x65
x46
⟶
False
)
⟶
(
x65
x7
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x57
(
x45
x66
)
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x8
(
x45
x66
)
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x2
(
x45
x66
)
(
x1
(
x4
x66
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
(
x65
(
x9
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
(
x2
(
x9
x66
)
(
x1
x66
)
⟶
False
)
⟶
False
)
⟶
(
(
x10
x11
⟶
False
)
⟶
False
)
⟶
(
(
x44
x11
⟶
False
)
⟶
False
)
⟶
(
(
x6
x12
⟶
False
)
⟶
False
)
⟶
(
x65
x12
⟶
False
)
⟶
(
(
x53
x13
⟶
False
)
⟶
False
)
⟶
(
(
x65
x43
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x8
(
x14
x66
)
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x2
(
x14
x66
)
(
x1
(
x4
x66
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
(
x65
x66
⟶
False
)
⟶
x65
(
x15
x66
)
⟶
False
)
⟶
(
∀ x66 .
(
x65
x66
⟶
False
)
⟶
(
x2
(
x15
x66
)
(
x1
x66
)
⟶
False
)
⟶
False
)
⟶
(
(
x44
x16
⟶
False
)
⟶
False
)
⟶
(
x65
x16
⟶
False
)
⟶
(
(
x6
x17
⟶
False
)
⟶
False
)
⟶
(
x65
x17
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x8
(
x18
x66
)
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x61
x66
⟶
x58
x66
⟶
(
x2
(
x18
x66
)
(
x1
(
x4
x66
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x58
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
(
x19
x67
(
x19
x67
x66
)
=
x19
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x61
x67
⟶
x58
x67
⟶
x2
x66
(
x1
(
x1
(
x4
x67
)
)
)
⟶
(
x42
x67
(
x42
x67
x66
)
=
x42
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x61
x67
⟶
x58
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
(
x8
(
x19
x67
x66
)
x67
⟶
False
)
⟶
False
)
⟶
(
(
x65
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x65
(
x1
x66
)
⟶
False
)
⟶
(
∀ x66 x67 .
x58
x67
⟶
x54
x66
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
(
x65
(
x19
x67
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
(
x2
(
x20
x66
)
x66
⟶
False
)
⟶
False
)
⟶
(
(
x41
x40
⟶
False
)
⟶
False
)
⟶
(
(
x58
x21
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x58
x66
⟶
(
x41
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x58
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
(
x2
(
x19
x67
x66
)
(
x1
(
x4
x67
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x61
x67
⟶
x58
x67
⟶
x2
x66
(
x1
(
x1
(
x4
x67
)
)
)
⟶
(
x2
(
x42
x67
x66
)
(
x1
(
x1
(
x4
x67
)
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x0
(
x22
x66
x67
)
x66
⟶
(
x3
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
(
x0
(
x22
x66
x67
)
x67
⟶
False
)
⟶
(
x3
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 .
x3
x67
x68
⟶
x0
x66
x67
⟶
(
x0
x66
x68
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 .
x61
x68
⟶
x58
x68
⟶
x2
x67
(
x1
(
x1
(
x4
x68
)
)
)
⟶
x2
x66
(
x1
(
x1
(
x4
x68
)
)
)
⟶
(
x0
(
x39
x66
x67
x68
)
x67
⟶
False
)
⟶
(
x0
(
x38
x66
x67
x68
)
x66
⟶
False
)
⟶
(
x66
=
x42
x68
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 .
x61
x68
⟶
x58
x68
⟶
x2
x67
(
x1
(
x1
(
x4
x68
)
)
)
⟶
x2
x66
(
x1
(
x1
(
x4
x68
)
)
)
⟶
(
x38
x66
x67
x68
=
x19
x68
(
x39
x66
x67
x68
)
⟶
False
)
⟶
(
x0
(
x38
x66
x67
x68
)
x66
⟶
False
)
⟶
(
x66
=
x42
x68
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 .
x61
x68
⟶
x58
x68
⟶
x2
x67
(
x1
(
x1
(
x4
x68
)
)
)
⟶
x2
x66
(
x1
(
x1
(
x4
x68
)
)
)
⟶
(
x2
(
x39
x66
x67
x68
)
(
x1
(
x4
x68
)
)
⟶
False
)
⟶
(
x0
(
x38
x66
x67
x68
)
x66
⟶
False
)
⟶
(
x66
=
x42
x68
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 x69 .
x61
x69
⟶
x58
x69
⟶
x2
x68
(
x1
(
x1
(
x4
x69
)
)
)
⟶
x2
x66
(
x1
(
x1
(
x4
x69
)
)
)
⟶
x0
(
x38
x66
x68
x69
)
x66
⟶
x2
x67
(
x1
(
x4
x69
)
)
⟶
x38
x66
x68
x69
=
x19
x69
x67
⟶
x0
x67
x68
⟶
(
x66
=
x42
x69
x68
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 .
x61
x68
⟶
x58
x68
⟶
x2
x67
(
x1
(
x1
(
x4
x68
)
)
)
⟶
x2
x66
(
x1
(
x1
(
x4
x68
)
)
)
⟶
(
x2
(
x38
x66
x67
x68
)
(
x1
(
x4
x68
)
)
⟶
False
)
⟶
(
x66
=
x42
x68
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 x69 x70 .
x61
x70
⟶
x58
x70
⟶
x2
x69
(
x1
(
x1
(
x4
x70
)
)
)
⟶
x2
x66
(
x1
(
x1
(
x4
x70
)
)
)
⟶
x66
=
x42
x70
x69
⟶
x2
x67
(
x1
(
x4
x70
)
)
⟶
x2
x68
(
x1
(
x4
x70
)
)
⟶
x67
=
x19
x70
x68
⟶
x0
x68
x69
⟶
(
x0
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 x69 .
x61
x69
⟶
x58
x69
⟶
x2
x68
(
x1
(
x1
(
x4
x69
)
)
)
⟶
x2
x66
(
x1
(
x1
(
x4
x69
)
)
)
⟶
x66
=
x42
x69
x68
⟶
x2
x67
(
x1
(
x4
x69
)
)
⟶
x0
x67
x66
⟶
(
x0
(
x37
x67
x66
x68
x69
)
x68
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 x69 .
x61
x69
⟶
x58
x69
⟶
x2
x68
(
x1
(
x1
(
x4
x69
)
)
)
⟶
x2
x66
(
x1
(
x1
(
x4
x69
)
)
)
⟶
x66
=
x42
x69
x68
⟶
x2
x67
(
x1
(
x4
x69
)
)
⟶
x0
x67
x66
⟶
(
x67
=
x19
x69
(
x37
x67
x66
x68
x69
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 x68 x69 .
x61
x69
⟶
x58
x69
⟶
x2
x68
(
x1
(
x1
(
x4
x69
)
)
)
⟶
x2
x66
(
x1
(
x1
(
x4
x69
)
)
)
⟶
x66
=
x42
x69
x68
⟶
x2
x67
(
x1
(
x4
x69
)
)
⟶
x0
x67
x66
⟶
(
x2
(
x37
x67
x66
x68
x69
)
(
x1
(
x4
x69
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x63
x66
⟶
(
x23
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x65
x66
⟶
(
x63
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x61
x67
⟶
x58
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
x8
x66
x67
⟶
x60
x66
x67
⟶
(
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x61
x67
⟶
x58
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
x57
x66
x67
⟶
x54
x66
x67
⟶
(
x60
x66
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x25
x66
⟶
(
x24
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x53
x66
⟶
(
x5
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x61
x67
⟶
x58
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
x60
x66
x67
⟶
(
x54
x66
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x65
x67
⟶
x2
x66
(
x1
x67
)
⟶
x49
x66
x67
⟶
False
)
⟶
(
∀ x66 .
x65
x66
⟶
x44
x66
⟶
(
x10
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x65
x66
⟶
x44
x66
⟶
(
x44
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x25
x66
⟶
(
x26
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x44
x66
⟶
x65
x66
⟶
(
x36
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x44
x66
⟶
x65
x66
⟶
(
x44
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x53
x66
⟶
(
x51
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x61
x67
⟶
x58
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
x65
x66
⟶
(
x60
x66
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
(
x65
x67
⟶
False
)
⟶
x2
x66
(
x1
x67
)
⟶
x65
x66
⟶
(
x49
x66
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x65
x66
⟶
x44
x66
⟶
(
x27
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x65
x66
⟶
x44
x66
⟶
(
x44
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x28
x66
⟶
(
x25
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x35
x66
⟶
(
x53
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x58
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
x65
x66
⟶
(
x54
x66
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
(
x65
x67
⟶
False
)
⟶
x2
x66
(
x1
x67
)
⟶
(
x49
x66
x67
⟶
False
)
⟶
x65
x66
⟶
False
)
⟶
(
∀ x66 x67 .
x44
x67
⟶
x2
x66
(
x1
x67
)
⟶
(
x44
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x61
x67
⟶
x58
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
x65
x66
⟶
(
x57
x66
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x29
x66
⟶
(
x28
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x65
x66
⟶
(
x47
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x6
x67
⟶
x2
x66
(
x1
x67
)
⟶
(
x6
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x29
x67
⟶
x2
x66
(
x1
x67
)
⟶
(
x29
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x28
x67
⟶
x2
x66
(
x1
x67
)
⟶
(
x28
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x25
x67
⟶
x2
x66
(
x1
x67
)
⟶
(
x25
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x26
x67
⟶
x2
x66
(
x1
x67
)
⟶
(
x26
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x61
x67
⟶
x58
x67
⟶
x2
x66
(
x1
(
x4
x67
)
)
⟶
x65
x66
⟶
(
x8
x66
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x65
x67
⟶
x2
x66
(
x1
x67
)
⟶
(
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x65
x66
⟶
(
x44
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x6
x66
⟶
(
x29
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x44
x66
⟶
x65
x66
⟶
(
x36
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x44
x66
⟶
x65
x66
⟶
(
x44
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x24
x67
⟶
x2
x66
(
x1
x67
)
⟶
(
x24
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 .
x65
x66
⟶
(
x6
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x6
x67
⟶
x2
x66
x67
⟶
(
x35
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x29
x67
⟶
x2
x66
x67
⟶
(
x30
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x28
x67
⟶
x2
x66
x67
⟶
(
x34
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x25
x67
⟶
x2
x66
x67
⟶
(
x53
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x26
x67
⟶
x2
x66
x67
⟶
(
x5
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x24
x67
⟶
x2
x66
x67
⟶
(
x51
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x63
x67
⟶
x2
x66
(
x1
x67
)
⟶
(
x63
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x63
x67
⟶
x2
x66
x67
⟶
(
x36
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x66 x67 .
x0
x66
x67
⟶
x0
x67
x66
⟶
False
)
⟶
(
x3
(
x42
x32
x33
)
(
x42
x32
x31
)
⟶
False
)
⟶
(
(
x3
x33
x31
⟶
False
)
⟶
False
)
⟶
(
(
x2
x31
(
x1
(
x1
(
x4
x32
)
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x2
x33
(
x1
(
x1
(
x4
x32
)
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x58
x32
⟶
False
)
⟶
False
)
⟶
(
(
x61
x32
⟶
False
)
⟶
False
)
⟶
False
(proof)